acta physica slovaca vol. 47 No. 3/4, 243 - 250 June 1997

PHASE-INTENSITY UNCERTAINTY RELATION FROM
QUASIPROBABILITY DISTRIBUTIONS!

H. Paul?, A. Orlowski®, B. Bohmer
Arbeitsgruppe “Nichtklassische Strahlung”, Institut fiir Physik,
Humboldt Universitit Berlin, Rudower Chaussee 5, 12489 Berlin, Germany

Received 2 May 1997, accepted 12 May 1997

It is well known that measured quasiprobability distributions such as the Q func-
tion or the so-called s-parametrized quasiprobability distributions for s < —1 that
are obtained by using inefficient detectors, allow us to determine a phase dis-
tribution as a marginal distribution, in the sense of an operational approach to
the quantum phase problem. Starting from the Klein inequality, we first derived
a rigorous inequality for the marginals of any positive phase-space distribution.
Specifying the latter to the above-mentioned quasiprobability distributions (in-
cluding the Q- function) and choosing the marginals with respect to phase and
amplitude, we reformulated the general entropic uncertainty relation as a phase-
intensity uncertainty relation of familiar form. The latter is distinguished by the
fact that it holds rigorously, however for unconventionally defined uncertainties.
We could show that these new measures of phase and intensity uncertainties ac-
tually are in good agreement with the conventional ones. The dependence of the
right-hand side of the new uncertainty relation on the parameter s, and hence on
the detection efficiency, proves to be extremely simple.

1. Introduction

Certainly, one of the most famous statements in quantum theory is Heisenberg’s
uncertainty relation for position £ and momentum p of a particle which is, in fact, a
direct consequence of the commutation relation for the corresponding operators = and
p

R 1

[p,z] = —i1 Dabwuv.m (1}
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In quantum optics, one identifies position and momentum with the two field quadratures
of a single-mode field. Already in the early days of quantum mechanics, a similar
reasoning was applied to phase ® and photon number N

&, N =—-il , AGAN >

B[ =
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However, this kind of arguing is dubious, since the commutation relation (2) cannot be
fulfilled by a phase operator that is well behaved, the reason being that ® and N are,
in a sense, incompatible: The phase operator must have a continuous spectrum from
physical reasons, whereas the spectrum of N is discrete and, moreover, has a lower
bound. This was actually pointed out by W. Pauli in his famous handbook article on
quantum mechanics in the wider context of time operators (of which the phase operator
is a special case).
On the other hand, Holevo [1], defining phase uncertainty in an unfamiliar way

Ay = |(exp(i®))|* - 1 3)

succeeded in rigorously deriving the uncertainty relation {2) for phase and photon num-
ber. The definition (3) has the advantage that it takes proper account of the periodicity
of the phase and, in addition, varies between 0 and co. What has been said until now,
refers to ideal measurements. However, it is well known that no measuring scheme has
been devised for the (ideal) phase, even in the form of a Gedanken experiment. Instead,
realistic measurement schemes were specified, in the sense of an operational approach
to the quantum phase problem. The first proposal [2] was to amplify the microscopic
field under investigation with the help of a (linear) quantum amplifier to a macroscopic
level. Then one can measure the phase properties of the amplified field with classical
techniques. Later on, L. Mandel et al. (3] proposed and investigated experimentally
an eight-port homodyne detection scheme for phase measurement. Theoretically, it
was shown (see e.g. {4]) that both schemes yield the same results, provided the lo-
cal oscillators used in Mandel’s setup are strong (laser) fields, the primary result of
measurement being the @ function from which the phase distribution is obtained as a
marginal distribution.

A further step towards a realistic description of the measuring device is to take into
account non-unit detection efficiency which amounts to replace the @ function by the
so-called s-parametrized quasiprobability distributions {5]. Here, the parameter s is
connected with the detection efficiency 7 in the simple form s = —(2 — ) /9.

Actually, it is not difficult to generalize Heisenberg’s uncertainty relation to the case
that the uncertainties are calculated with the help of an s-parametrized quasiprobability
distribution, the result being [6]

1-—
L (4)

In the present paper it is our goal to derive a similar uncertainty relation for realis-
tically measured phase and intensity.
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2. Entropic inequalities

We start from the @ function of a given field state. The corresponding distributions
for phase and amplitude are given by the marginals of the @ function written in polar

coordinates r,@

w(p) = \ooo rdrQ(r, o) (5)

and

2
wir)= [ dpQene) (©)

We have put o = rexp(ip) {a complex field amplitude) in order to ensure the corre-
spondence between r* and the photon number. Let us now introduce the concept of

Webhrl’s entropy [7,8] ;

27 o]
s== [ do [ rdrQe.e)nQ(re) (1)
0 0
and define, in addition, the following marginal entropies
27
Se=— [ deule)nuly) ®)
0
o
S I\ rdrw(r) Inw(r) ) (9)
0
We now use Klein’s inequality
Int<t—-1 (t>0) (10)
m@élnnmz in the form
t=2 , z(lmz-ly)>z—-y (11)
z

to derive an inequality between the entropies (7) - (9). On identifying z = Q(r, ¢), y=
w{p)w(r) and integrating over the whole phase space, we readily find the desired relation

S,+5.>8 (12)

It has been shown that Wehrl’s entropy becomes minimum for coherent states in which
case it takes the value 1+ Inn [8]. We thus end up with the basic inequality

Se+S525>14Inn (13)

This result is readily extended to the more general case of s-parametrized quasiproba-
bility distributions with the result

1—s
2

MWV +80)>56) > 14nr+In (14)
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3. Phase-intensity relations
The inequality (14) is equivalent to the relation

b o . 11— :
eS8 S 5 o5 5 5 < (15)

which, in fact, has the form of an uncertainty relation we are looking for. What stil]
has to be clarified, however, is the connection between the exponentials on the lefi-

hand side and uncertainties. To this end, we study first the special case that the phase -

distribution is a Gaussian of width Ap <« 27. Then a simple calculation gives us the
result .
e = (2re) T Ap (16)

As the second observable we consider the intensity (in units of hv like the photon
number) which is given by I = r® . Noticing the relation dJ = 2rdr, we see that the
intensity distribution W(I) has to be identified with w(r)/2. Specializing here also to
a narrow Gaussian of width AJ <« I, (mean intensity), we readily find

eSr = wsimz (17)

The results (16) and (17) lead us to consider those relations as definitions of new
uncertainty measures for phase and jntensity. Then it follows from the inequality (15)
that the following uncertainty relation holds rigorously

ApAT > (me)~1e5 > mmlv (18)
This is our main result. It should be noted that in addition to an absolute lower
bound there exists also a lower bound (me)~exp(S®)) that is specific of the state
under consideration. Moreover, it is interesting, however not unexpected, to see that
the right-hand sides in Eqs. (4) and (18) are the same, Just as in the case of ideal
measurements. ’
We have illustrated our results by some numerical examples. Fig. 1 indicates that
Holevo’s measure of phase uncertainty adapted to the present situation in the form

2n —-2
AdZ = \c S?Xﬂvaxwﬁﬁv&ﬁ -1 (19)

is higher than the variance, whereas our entropic measure is lower. We found that this
is, in fact, a general feature exhibited, in particular, by Fig. 2. Further, our numerical
analysis revealed that the entropic measure of intensity uncertainty is always smaller
than the variance (see Fig. 3). Fig. 4 shows that the entropic phase-intensity uncertainty
product for squeezed states comes very close to the absolute lower bound, irrespective
of the intensity. Fig. 5 indicates that for a displaced Fock state this product differs
noticeably from that based on familiar uncertainty measures. Its value i much greater
than the absolute minimum, it comes close, however to the specific lower bound. Finally
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Fig. 1. Different measures of phase uncertainty versus parameter s for a Glauber state with

a=2.
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Fig. 2. Diferent measures of phase uncertainty for a Glauber state and s = —1 in dependence

on a.

one observes from Tig. 6 that the entropic uncertainty product approaches the other
ones for decreasing values of s.

After preparation of this paper, the authors became aware of a e:mowwin..& study [9]
(ef. also [10]) in which the following entropic uncertainty relation was derived for the
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Fig. 3. Different measures of intensity versus s for a Glauber state with o =
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Fig. 4. Intensity-phase uncertainty product for squeezed states with squeezing parameter 3
versus o (displacement). The marks on the right ordinate indicate the respective absolute
lower bounds (1 — s)/2.

case of ideal measurements

- \D ; d OW () In W () — WU W, In W, > In(2x) (20)

n=0

Here, the phase distribution is evaluated as a positive operator-valued measure (POM)
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Fig. 5. Same as Fig. 4 for a displaced Fock state with n = 4. The Wehrl limit is the specific
lower bound exp(S/en).
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Fig. 6. Intensity-phase uncertainty product for a displaced Fock state with n = 4, a = 10,
versus .

based on London’s phase states, and W denotes the probability to detect n photons. In
the light of this paper, our investigation appears to be the natural extension of Eq. (20)
to the case of realistic measurements. Qur derivation has, however, the advantage that
it is rather simple, from the mathematical point of view.

In summary, utilizing the concept of Wehrl’s entropy we succeeded in proving rigor-
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ously an uncertainty relation for realistically measured phase and intensity. The price
we had to pay for this is, similar to Holevo’s approach [1], to adopt unfamiliar measures
for the uncertainties.
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