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We investigate the triply resonant optical parametric oscillator using a spherical
mirror cavity and a finite-sized pump. We show that, depending on the size of
the pump and the cavity geometry, a cross-coupling between different pairs of
oscillating cavity modes occurs. This leads to a modification of the oscillation
threshold and allows simultaneous oscillation of several mode pairs with fixed
relative phases. Several distinct stable solutions with different thresholds can
be found and simultaneous degenerate and nondegenerate operation is predicted.
This implies the appearance of transverse optical field patterns above threshold.

1. Introduction

Nowadays the optical parametric oscillator {OPO) has become a device with a broad
range of applications (cf. the recent contributions to special issues on second order non-
linear processes [1]). A quantum description usually starts with a mode] Hamiltonian
involving a (quantized) pump mode and a single or a pair of modes for the signal and
idler fields, which are coupled by some effective nonlinear coupling constant. Al] the
other modes in the cavity are usually neglected, as they are assumed either to be far
off resonance or dynamically uncoupled. In general this assumption is not valid and
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hi ) :
igher order transverse modes play an lmportant role in the dynamics, forming optical
threstiold [ g o.E [2] and modifying the nonclassica] Photon correlations beloy
e . In a .;_oF for a resonator with nonplanar mirrors, 3 finite-sized pump
b an extra nonlinear coupling between different signal and idler mode pairs. This

Hrmsn\M ,Mﬁmwmmmmw M nm<MM% with spherical mirrors and a thip nonlinear x2-crystal inside

§ coherently pumped at 5 frequency w, fro ide irrors

: i » Irom the outside and the mirrors

MMM MWMMMM:& M:@E% n.mmmns.sw at the pump frequency as well as around the signal ¢

et o Awt. .ch:mbo_wm, with Ws T wi = wp, ie. we consider the triply resonant nmmm

o with a common cavity for all fields. Neglecting the influence from the thin
ystal we use an expansion of all fields in Laguerre-Gaussian modes [4]

Unpe(r, ¢, z) = emtknpez Unpe(r, ¢,2) for p=0,1,2...; £=0,+1,42, ...

Unpe(r, ¢, 2) = 2p! 1 {9 o . Var]?
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e 72 z .
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M&mﬂvaﬁw functions N_M_ are the Laguerre polynomials. As always the wavevectors
_umum mawny MMMMQ m:?v \M that allow mnwEm. m.&?mvwom:omum oscillatory solutions have to
o fom the boundary conditions (including the refractive index n(z} of

€ crystal). Here w(z) denotes the wajst function w?(z) = w(l + (z/20)%) with

2 _ o :
W = 220/ kppy the minimal wajst and Zp denoting the Rayleigh length. 9(2) = z + iz

isd i i i
efined as a complex curvature’. In this basis our model Hamiltonian reads:

H = N&o+m~u+m0+mm (2)

Hy = M mE.?n.N.a.».s + M m&m_am.n.\ (3)
{7} J€{ieidi}
Hp = 4 Mu@:.w-..emnw —erta; Q) (4)
{2 ’

He = 4 J

c :,G* . MU yﬁmi:?:amam —a} aj,a;,) (5)

Je:dirdp

Hp = >

.\mﬁ.w.?h...rn.nw

+
(a}T; +a;T} ), (6)

S_ﬂw aj,,a;,, aj; being the mode annihilation operators for the pump signal and idler
modes, respectively, and I'; being independent bath operators momaa:um:‘m the damping of
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Coupling Integrals

b,

Fig. 1. Transverse part y; of the nonlinear coupling integrals for a TEMoo pump mode
(L=14).

the various modes including diffraction losses and absorption by the crystal. {Jp:Jsy 7}
are combined indices for the mode quantum numbers j, = A:SF\.S\T: € {p,s,i}
for each mode. The frequencies w; for the set of relevant modes {j,, j,, ji} depend
on the cavity and crystal geometry, for which we have three cases in mind, namely a
quasiplanar, quasiconfocal or quasispherical cavity. The parameters

Qj, = \
Frirror

describe the linear coupling of the various pump modes to the external pump field
E,(Z); in the case of pumping at the fundamental mode we have Qj, =€ 3p,,0) 3¢, ,0)-

For a short crystal we approximate the nonlinear coupling integral w\“w i [5] by

e — 2
Xm..@ - Phh\ﬁ

crystal

&z U3, (7) B, (%) (7)

drd¢ Uj,(r,4,0) Ui (r,4,0) QM.. (r,,0). (8)

The factor x* in front of the integral reflects the longitudinal phase mismatch {on-axis),
which for the moment we will assume to be slowly varying for the considered modes
(thin medium). A more detailed and systematic treatment will be given elsewhere [6].

From symmetry considerations it follows that the angular part of these integrals
vanishes except for £, = ¢, 4 £; . Thus we get ¢, = —{; for a pure TE My mode in the
pump field. Assuming a crystal cross-section much larger than the mode functions, the
transverse (r, ¢) integral can be evaluated analytically for almost degenerate signal and
idler frequencies with beam waists w, = wy(k = kj,) and w, = w;, yielding

(n,0,0) = ,\W Wp 1 (b1 + s + |£])! 9)
XL (o1 8),(np2—0) = |/ 7 2wf + wi, witeatld | /E (P + 1) (ps + €)1
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The lowest few of these integrals giving the coupling of the T'E My, mode to modes with
€=0 and £ = &1, are graphically visualized in F ig. 1a and 1b,

The most striking difference to the ordinary OPO-treatment appears, if one looks
at the radial indices p- The nonlinear coupling imposes little restriction on possible

combinations of radial modes, and a coupling of the p, = 0 mode to different signal/idler

pairs {p,, p;} occurs. One might say that a photon in the pump mode can now be split
either into a degenerate pair of the same radial index Ps = pi or into a nondegenerate
pair p, # p;. (Actually one has a superposition of all these possibilities.) This is related
to the radial confinement of the pump field, which leads to a transverse momentum
uncertainty, weakening the transverse pair correlation. Note for comparison that in the
case of a plane wave pump, the orthogonality of the modes implies p; = p, and no such
cross-coupling occurs [3].

3. Semiclassical analysis of the case with two OPO modes

In order to work out the main physical implications of this mode coupling process, let

us now consider the simplest nontrivial case where such a @rmnosmz.o: can be studied.
For this we assume most couplings x to be small or the corresponding mode detunings
large, so that besides one pump mode, only two more modes, a; and as, effectively take
part in the downconversion process. For example we take only the largest 3 couplings
of Fig. la into account. Although a bit unrealistic, this gives some understanding of
the underlying physical mechanisms. For simplicity we label the three relevant modes
simply by 0, 1,2, with index 0 belonging to the pump mode.

Starting from the Hamiltonian truncated to three modes, neglecting quantum noise
and transforming the rapid optical oscillations away, we end up with the following
equations for the slowly varying mode amplitudes ;

% = (=70 +4ilAg) ag~ x; af — x2 03 — x5 may + B,
@1 = (-1 +iAr) a; + 2x1 a0a] + 12 agal
@2 = (—72+iAs) az + 2, @003 + X12 aga] . (10)

Here +; is the decay rate of the i-th mode and the detunings A; are defined as Ay =
Wy — wp, A} = w; —w, and Ay = wy — w;.

For simplicity we have assumed all nonlinear coupling constants X: to be real. Note
that the limiting case X12 = 0 corresponds to the usual degenerate OPQ case (actually
two degenerate OPOs), while the case X1 = x2 = 0 gives the nondegenerate QPQ. In
our model with a finite sized pump field, both processes oceur simultaneously.

In the special case X12 = 2,/x1Xz it is possible to introduce a linear combination

b=+/x1/(x1 + X2) aj + VX2/(x1 + x2) az as a new mode operator with proper com-
mutation relations leading to the simple form He = ih /X7 F Xz (afb% — h.c.) for the
nonlinear Hamiltonian. Hence it is possible to interpret the Interaction of the 3 modes
including degenerate and nondegenerate downconversion processes and cross-coupling
as a single rescaled degenerate OPQ. In general, however, we have to consider several
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: 3
simultaneous nonlinear processes.

3.1. Steady states and threshold conditions

Fortunately, in this model limited to 3 .Eomom in total, the steady mamnm_ E.Euﬂgnwmm
of the fields and the corresponding oscillation thresholds can be found analytically. am
in the standard case for a weak pump field, up to a first threshold only the pump mode
“Q:wamm. while the semiclassical amplitudes of all other modes are zero

Qm“@uw Qw“Qw =0. AH”—V

Above this first threshold, for nonzero x;5 there exist :osnl.i& steady state mowc.a.o:m

with definite relative phases. Oroo&:m._&m pump field wﬁvrgmo E, real wuw wn‘vm;ﬁ_ﬁ

the possible solutions fullfill: of = r; €™ with ¢; = m% and m € {-1,0,1, rw. s :w

most striking difference to the usual NDOPO, Srmwm. the amplitudes do :o.ﬁ ave we

defined steady state phases, but only the sum phase is fixed, we find that m_BEﬁmcoowm

oscillation of both modes with well-defined steady phases occurs. Note that even very

weak cross-coupling leads to locking of the _urwmmm.. Above M second threshold, there are
nontrivial steady state with opposite sign in o; and ay;

mcnﬁmmﬂ.om:ogm the mnm_wa quantities by = \/(v2/71)(x1/x12), k2 = (V11 /72) (X2/x12),

and h?, = 1+ (hy — h2)? we find explicitly:

a) solutions with same sign:

For pump fields E, above the first threshold

En = Y0V 72 1 >0, (12)
= Y12 hi+hy + hyy

the following + pair of solutions appears

0 _ Er,
Yo

E, - BEr 0 0
o _ 72 b4 1 , ad=(a v., ... . (13)
o = F V 71 x12h12 [1 + 2ha(hia — hy + hy))] 2 = (o} nrens

b) solutions with opposite sign: . .
The threshold for this type of solution occurs at |Er,| > Er, with

_ YoV 1 (14)

X12  hi4hy—hyp'’

Er,

P
. . w . 3§ "
3Note that in the rather restrictive case of only one pump mode j, = jp, involved, with X, j, being

teal and symmetric and complete degeneracy (including equal cavity decay rates!) of all m.mm=m_\~&—mn
)

modes, one can transform to a basis where we get an uncoupled set of Umumuo S mm.?.mwno& in Ref. E,

with :wo&mmn_ basis functions. As these conditions are rather restrictive, we will not pursue this

approach further and stay with the natural uncoupled cavity basis.
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Fig. 2. Type and stability of stationary solutions,

and we have to distinguish the two cases:
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i) B -coupli 12 e
) For weak cross coupling (x5 < 2 X1 X2) a pair of real solutions

Qm = I’@ﬁ
Yo

0

o] =

emerges for £, > Er, > (.

it) For st - )
) For strong cross coupling (x5 > 2./X1 xz) we have an Imaginary pajr of solutiong

0 ﬁm.ﬂu_
Yo

o] = 4| |2 5 -lPnl
n XSTM (hy — ha + hi3)® — (b

1—hy + bqu + b;

moﬁm.u > :wq.L > 0. An overview on the possib
regimes is depicted graphically in Fig. 2.

le solutions for the various parameter

Nmn m_ﬁ INm_.H
/ L=
M x12 TS (1 — by + h12)? ~ (hy — ha

+ )+ by |

“Qw == AQ_V T1e+yy
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the general classification of solutions is still useful as a guideline, and especially in
the weak cross-coupling case the dynamical behaviour of the solutions remains similar.
For the strong cross-coupling case this behaviour is only found up to a certain critical
detuning. Beyond this, no steady state exists any more and one finds oscillatory (time
dependent) solutions, as shown and discussed in section 4.

Steady states of coupled OPO

Stability of first solution Stability of second solution
real _E.m mﬂ eigenvalues real parts of eigeavalues
’ E/E
P L5
08 09 1.1 12 i B,
0.5 0.5 LA
m,_._
. 0.8 0.9 1.1 1.2
Ey; 03
L5
-1.5

(b) ©)

Fig. 3. (a) Steady state solutions as a function of pump strength. (b),(c) Linearized stability
analysis.

3.2 Linearized stability analysis

Since mainly the stable solutions are directly observable in practice, we will now
discuss the stability of the various solutions in particular operating regimes. This is
done by a linear stability analysis for the equations of motion Eq. (10); the negativity
of the real parts of the eigenvalues of the Jacobian matrix at the various steady state
solutions is checked numerically. Let us again consider the two cases:

(1) weak cross-coupling (mainly degenerate 0PO)

Fig. 3a shows the ’same sign’ (solid lines) and ’opposite sign’ (dashed lines) solutions,
which appear above their thresholds. In Fig. 3b we show that all real parts of the eigen-
values of the linearized matrix evaluated at the solutions {Er, /70, £r1, %79} become
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crossing the second threshold Er,. In contrast to this, Fig. 3c demonstrates that the
pair of solutions with opposite signs in o, and asz, i.e. {Ep, /v, +R, ¥R}, remains un-
stable even above its threshold of existence Er,. Therefore, in the present case, the pair
with the same sign represents the only stable pair above Er,, at least for the parame-

are polynomials of high order, it is impossible to prove that the behaviour depicted in
Figs. 3(a-c) is universa) in parameter space; however, numerous numerical simulations
of the equations of motion have increased our confidence that the remaining parameters,
as for instance the damping rates, play no essential role. Nonzero detunings, however,
lead to a qualitative change of these results.

(31) strong cross-coupling (mainly nondegenerate OPQ)
As before, the solutions {Er, /70, #7r1, 72} become stable above their threshold Ep,.

Here the second pair emerging for E, > |ET,|, namely {Er, \Qo_uwmmrn_ntwuw turns

3.3 Discussion

Let us now briefly add some comments on the dynamics of this model. Below
all threshhiolds only the pump field oscillates and all other modes contain only noise.
However, the intermode coupling could still be observed in the modified spatial photon
correlations. In our mode] a photon in one mode is correlated with either one in the
same mode determined by amplitudes proportional to x; and X2 or with a photon in
the other mode with an amplitude proportional to x12- If one can spatially separate the
two modes, this behaviour should be observable. Also the lowering of the thresholds as
a function of the pump size could be investigated.

Above threshold the effect should be even more drastic, as one would get simultane-

to oscillate simultaneously at the predicted lowered threshold and the pump field (short
dashed line) is clamped at its threshold value. The signal and idler modes (solid lines)
increase with the pump amplitude as expected. We find that this oscillation is stable
against small perturbations in amplitude and phase. For different initial conditions also
the stationary solution with both signs ( a; and a3) reversed appears and is stable (long
dashed lines).
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coupled two mode DOPO

coupled four mode H.AUOWO
nonzero detuning

Fig. 4. Dynamics of the multimode OPO.

4. Nondegenerate four and more mode case

As is obvious from Em. 1, in a more realistic description accounting for mz:“ow pump-
field size, the restriction to just two modes is somewhat artificial and more mﬁ.:& as
well as pump modes (fed by sum frequency generation processes) should be considered.
In such a model an analytic solution for steady steades and thresholds seems rather

tedious and we retreat mainly to numerics here. ‘
As a first generalisation we look at the case of simultaneous multiple nondegenerate
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operation (i.e w; # ws) involving two pairs (a1, £1) and (@2, B2) which are additionally
cross-coupled. Without detunings the system’s behaviour is very similar to the pre-
vious case, with the main difference stemming from the possibly different decay rates
of the various modes involved. Again one finds a modification of the thresholds and
multistability between different, steady state solutions. We will not give explicit ana-
lytical expressions here, but demonstrate the behaviour numerically. The possibility
of phase stable combined four-mode-operation is shown in Fig. 4 b. In position space
this would manifest itself in the appearence of a stable radial pattern. This situation is

5. Conclusions

We have shown that considering a cavity geometry where the transverse mode split-
ting is not very large [e.g. a Ecwmm-vv_m:ma\oozmog_\mvrmlom_ cavity] and taking the
finite size of the pumpfield (which could e.g. be mode-matched to the same cavity) into
account, can dramatically change the behaviour of the triply resonant QPQ (TROPO).
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