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TIME-DEPENDENT PROBLEMS IN QUANTUM-MECHANICAL
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We study the state reconstruction of wave packets that travel in time-dependent
potentials. We solve the problem for explicitly time-dependent harmonic oscilla-
tors and sketch a general adaptive technique for finding the wave function that
matches an observed evolution.

1. Introduction

At the 4th of the series of splendid Central-European Workshops on Quantum Optics
we discussed [1] how to extract the density matrix of a one-dimensional Schrodinger
wave packet from position measurements of the corresponding “particles” evolving in
time. We arrived at the compact reconstruction formula

pn = (mlpimy = (( ZlnEoeE0] ) - W

z,t

Here pmn denotes the density matrix in energy representation, ty, is the regular and ¢,
the irregular wave function of the energy eigenstate | n). The double brackets describe
an average with respect to the experimentally measured positions z at all times ¢.
Central to this result is the orthogonality of d[,(2) ¢n(2)]/dz on products of wave
functions ¥,(z) ¥, (=) that obey the frequency {energy) condition wy, — w, = wp, — wy,.
Formula (1) was proven [1, 2, 3, 4, 5] for bound states in time-independent potentials.
It turns out [6] that in the continuous part of the spectrum the order of regular and
irregular wave functions is critical. We are entitled to use formula (1) only if the energy
wn of |n) exceeds wy, of | m). Otherwise we should replace (1) by

o = ({ om0 aten] ) ®)

z,t
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What happens if the wave packet travels in a time-dependent potential? Why is this
interesting? )

Paul traps, for instance, require a time-dependent potential for trapping charged
particles. If the parameters of the trap are chosen right the particle moves effectively
in a stationary harmonic-oscillator potential, apart from a rapidly oscillating motion
called the micromotion, cf, for example [7, 8]. The trap is quasi-one-dimensiona) if
one component of the 3D binding force is very weak compared to the others. If the
trap is large enough the spatial motion of the trapped particle is directly observable
via detecting the fluorescence light [9]. In this case we do observe a quantum particle
moving in a time-dependent potential.

There is another prominent physical system that can be reduced to a wave packet :

traveling in a time-dependent potential: A Bose-Einstein condensate is a trapped many-
body system where all “particles” are approximately in identical pure states described
by the wave function . However, because of the collisional interactions between the
condensed particles, the dynamical law of 9 is nonlinear
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Here U denotes the trap potential, m is the particle mass, ki equals unity and g quanti-
fies the mutual particle interaction. We note that the density |y (z, t)]? can be measured
by phase-contrast imaging [10] very much like a living cell is observed in phase-contrast
microscopy. Can we reconstruct ¥ at a time ¢y when |y(z,1)|? is given for all times?
Looking at the nonlinear Schrédinger equation (3) (called the Gross-Pitayevski equa-
tion) we notice that :

Vet = U+ |9z, 1) (4)

acts just as an effective potential in a linear Schrédinger equation. This potential is
known if |¢(z,1)|? is known, yet Ueg is clearly time-dependent. The problem of finding
¥(z,10) from [y(z,)[? is thus reduced to state reconstructions of wave packets moving
in arbitrary time-dependent potentials. We also note that z is three-dimensional for
a real Bose-Einstein condensate. This is indicated by the Laplacian in Eq. (3). Soin
addition to the time-dependence of the potential we are facing here a multidimensional
problem, in general.

2. Time-dependent harmonic oscillators

Let us first approach the problem of a one-dimensional time-dependent potential.
Let us study a simple and completely solvable model to see whether we can extend
our reconstruction recipe (1) to this situation. Our model is, of course, a harmonic
oscillator with a time-dependent frequency w(t) denoted by the Hamiltonian

! 0= 30"+ 3(1) ¢ (5)

As we have mentioned in the introduction, a one-dimensional Payl trap is a physically
relevant example of this model.
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There are several ways to establish a theory of the m?.;m nmoosws.wofeoz mo_._.w:wm
dependent harmonic oscillators. We have m;&%m the option of :m_:.m a tomog M.urm—.
technique, because the motion of § and p is linear. Let us, however , pursue m:Oa.
approach that is based on a remarkable scaling property [11] of the Schrédinger equation

2
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For describing the quantum motion of & we introduce a classical reference oscillator
that obeys Hill’s equation
elt) +w?(t)e(t) = 0 (1)
dt?
with the initial condition .
e(0)=1 , £(0)=1iwp . (8)
First, we notice that Hill’s equation (7) conserves the Wronskian

(t)E(t)" — é(R)e(t)* = £(0)E(0)" — £(0)e(0)* = —2iwy . 9)

We introduce the phase § and the reference amplitude gq,

E*e
f=arge , ¢ = o (10)

and see from the snoumim?@ that the phase obeys
6=g5?, (11)
ie. § is just the temporal integral of g5 %. We represent ®(q,t) by the scaling ansatz
8(q,) = $(z,0) a5 " exp (Fidogor”) , ==4/a0 (12)

and find that ®(g,?) satisfies the time-dependent Schrédinger equation (6) if ¢(z,0)
solves

N M
N.mlﬁnlwm|ﬁ+wl&. (13)
a6 2 9z 2

In this way we have transformed the time-dependent problem to a familiar time-
independent model. .

.Hmurm state reconstruction procedure [1] relies on an orthonormal system with respect
to products of wave functions ¢,(q,t) ¢¥}(¢,t). The mvm.sw_ mm_._éﬁém. of H.mmimw.m,zm
irregular wave functions form such a system [2]. In particular, we obtain for the time-

independent harmonic oscillator {3, 12] described by Eq. (13) the central relation

imbn =2 [ [ e 0w 0) L o O nte Ntz . ()
c .
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We use the scaling property (12) and the phase equation (11) and find for the time-
dependent harmonic oscillator

1 J* pies . a .,
Smn = [ [ 000000 2 90,0 0000, 011 30
] -0

Il

T rtoo
W\c \|8 Yulg,?) euSkv%mEu,?.& (g, t)]dg dt . (15)

Therefore [1], the density matrix is given by the integral

T +o0
=[] 08,0, 01pr(a, 1) dya (16)

with respect to the observed probability distribution pr(g,t) from time ¢ = 0 until a
time T when the phase @ reaches 7. This result indicates that we could extend formula
(1) to one-dimensional time-dependent problems. However, the factor #~! in front
of the integral (16) suggests that the normalization will be different from the time-
independent case [1]. Currently we are working on a proof to generalize our result to
arbitrary potentials.

3. Nonlinear wave packets

Nonlinear atomic wave packets, for example traveling Bose-Einstein condensates,
move in effective time-dependent potentials, as we have pointed out in the introduction.

problem. The density matrix in position representation p(z,2') is a function of 24
variables. On the other hand, the probability distribution pr(z,t) depends on only
d + 1 variables. We find it hard to imagine how one could extract a 2d-dimensional
function from d + 1 dimensiona] data if d exceeds unity. Therefore we expect that
formula (1) is restricted to one-dimensional systems.

However, our principal goal for atomic wave packets is not the determination of the
density matrix but the reconstruction of only the wave function. We know [13, 14, 15]
that the measurement of [¥(z,10)|? and of the first temporal derivative of [¥(z,10)]?
at a given time ty is almost [15, 16] sufficient to reconstruct (x,tg). We expect that
the observation of the motion for an extended period of time removes some ambiguities
[15, 16]. Note also that forming a derivative usually enhances experimental errors.
Therefore we believe that an extended observation is more practical than the minima-
listic approach where only l¥(z,10)]? and (=, t0)]? /Oty are required.

How can we infer the wave function of a moving wave packet from position measure-
ments? We assume that all external parameters are kiown, i.e. the equation of motion
and the effective potential. We could, for example, start with a trial function @ and let
1t evolve according to the Schrédinger equation for 1. Then we compare |p|* and [¢|2
and vary o in such a way that the evolution of || and J#]? coincides. But, of course,
the Hilbert space of ¢ is quite roomy, and thus, the probability of finding ¢ by trial
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Fig. 2. Mustration how ¢ adapts to 1 when ¢ was initially a localized Gaussian wave packet.
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We have set the adaption rate k to the value of 7.

and error is rather low. A more intelligent approach would be adaptive. Wﬂosmwmm nﬁm
evolution of |i|* we could constantly adapt ¢ eo.;m measured wave packet.
we must use a nonlinear propagation for ¢. The simplest ansatz is

90 = (1o 4 U)ot ik (01— 16l 0. (17)
ot 2 |
If |0)? coincides with ji|? at all times the evolution of ¢ mmooﬁw_am ?_MM_M P. At %oﬂw_ﬂw_””
. . .
23 2 the modulus of ¢ is damped and where exceed
%ermnm Wﬁ&ﬁ%ﬁ“ﬁiwﬁwxvmg that if |4|? deviates from |p|? by a small quantity ¢ the
is amp . :

evolution of ¢ converges to 9. To be more precise, we represent ¢ as
i0
plz,t) = [¢(z, 1) + ez, t)] ¢

ith a constant overall phase . We obtain from the adaptive equation (17) the dy-
wi

(18)

namical law for ¢,
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m_,“m. 3. Evolution of n_ﬁ Ew&z_:m-masw_.mm scalar product, _ % P e &H_N of ¢ and . We see
that after about one oscillation cycle ¢ coincides with ¥, apart from a trivial overall phase 8

which implies

d 2

l».\ (% + ey + e v +e9® + 2[e]?)] dz
—k \Amé +e*) dz
< 0 ) (20)

.mo~ a small . O.ozmon:m:ﬁ_%. € must tend to zero if ¢ is small. In other words © = 1pet?
1s a stable solution of the adaptive equation (17).

An important point is that the nonlinear Hamiltonian in Eq. (17) is non-Hermitian.
Therefore we have to normalize ¢ to unity after each temporal step,

X

ﬁ?.k..*. dt) « o(z,t + dt) ﬁ\ lo(z, ¢ + &s_u&L o i (21)

So far we were not able to prove that ¢ converges with certainty to a solution that
Smno.vom [%]? for all times. Our numerical tests indicate that this could be indeed true

Fig. 1 shows the one-dimensional evolution of a nonlinear Schrédinger-cat mﬁwam.
(a double condensate [17]) in a harmonic potential U(z) = 122 with the additional
:o.u_E.mm.w ._Umds gl¥(z,t)|? and ¢ = 10. Fig. 2 illustrates roim % adapts to 1 with .
being initially a localized Gaussian wave packet. We have set the adaption rate k MM
the value of 7. Fig. 3 displays the modulus-squared scalar product, _ [v*e &a_m of ¢
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4. Summary

The example of an explicitly time-dependent harmonic oscillator indicates that the
extension of the state-reconstruction recipe (1) to time-dependent problems seems pos-
sible. In addition, we can use a nonlinear adaptive technique to find the pure-sate wave
function ¥ from the evolution of |¢|2. We finally remark that the latter method is not
restricted to one-dimensional geometries.
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