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CORRELATED AND SQUEEZED VIBRATIONAL STATES
IN POLYATOMIC MOLECULES 12
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It is shown that different types of nonclassical vibrational states including quadra-
ture and amplitude squeezed, entangled and Schrédinger cat states emerge during
laser pulse excited Franck-Condon transitions in molecules.

1. Introduction

Recent progress in ultrafast optics [1,2] opened new possibilities in the control and
observation of real-time molecular dynamics. There are both theoretical [3-7] and ex-
perimental [8-13] investigations of these problems. In recent papers it was shown for
diatomic molecules that depending on the change of the geometrical configuration of
the potential curves and the characteristics of the light pulse, a Franck-Condon tran-
sition may result in vibrational quadrature or amplitude squeezed states with different
properties [14]. The possibility of preparing other nonclassical vibrationa) states in
diatomic molecules has also been investigated.

In this paper we review the preparation of nonclassical vibrational states in molecules.
A displacement of the equilibrium nuclear distances due to the excitation of the elec-
tronic system leads to vibrations of the nuclei. The change of the vibrational frequencies
also results in vibrations even if there is no displacement of the equilibrium positions.
We determine the time-evolution operator and the emerging vibrational state of a poly-
atomic molecule in a Franck-Condon transition when the electronic system is excited
with a transform limited, weak light pulse. The potential surfaces are approximated
with general harmonic potentials. We show that depending on the duration of the ex-
citation pulse and the parameters of the transformation of the nuclear potential the
vibrational state will be vibrational Schrédinger-cat state, amplitude squeezed state,
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quadrature squeezed state, and vibrational entangled state. The von Neumann entropy
of the states is introduced as a measure of the entanglement. An essential consequence

of the entanglement is that there exist observables of the different vibrational modes
that exhibit correlations.

2. Model Hamiltonian

The vibrational Hamiltonian of a polyatomic molecule consists of 3N — 6 harmonic
oscillator Hamiltonians if the molecule is nonlinear and 3N — 5 if the molecule is linear, :

where N is the number of the nuclei in the molecule. Let us consider an N-dimensional
system described by the Hamiltonian

N
— 1 ~2 2.2
H; = M:MHUHAE: +E§Q:v« AHV

where p, and §, are the momentum and normal coordinate associated with the nth
vibrational mode, and w, is the frequency of the vibration. First we summarize briefly
how the vibrational state of the molecule can be found after a sudden change of the
parameters describing the nuclear potential. We follow the derivation described in [15].

In general both the equilibrium distances and the harmonic force constants are altered.
The new Hamiltonian has the following form

> HZ. HZZ 2
Hy=33" 2t 5D D Unmbndm + Y fadn. 2
n=1 o on=lm=1 n=1
Here p, and §, are the same dynamical variables as in Eq. (1).
A new coordinate system can be introduced by means of the linear transformation

' =54+4d, (3)

in which the Hamiltonian Eq. (2) is diagonal. Here S describes a pure rotation and
d is associated with the displacement of the normal coordinate system. The variables
associated with the new coordinate system are denoted by an apostrophe.

The connection between the vectors d and f can be expressed as d = A~1Sf , where
the matrix A = diag{w’,?} contains the vibrational frequencies of the molecule in the
new normal coordinate system. In the end the final Hamiltonian reads

N
- 1 . 2.
Hy =5 X 67 +w*q2) - (4)
n=1
where Hy = dAd. Hy arises from the translation of the equilibrium distances.
There is a unitary transformation denoted by % which connects both the initial
and final Hamiltonian of the system and the state vector in the initja] and in the final

coordinate system [15]:

a =STAS, jwy, =5, (5)
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This unitary transformation in the Hilbert space is equivalent to the linear transforma-

ion of the normal coordinates in Eq. (3). o . ]
Sosbmﬁ us consider the problem of the Franck-Condon transition in a polyatomic mole

cule excited with a transform limited light pulse described by the electric field
E(t) = Eqexp(—u®t?/2) cos(Qt), (6)

i i i i frequency of the pulse. The
is the maximal amplitude and € is the mean . . :
M< :M”Momc% the pulse is proportional to u~!. In the rotating ‘wave m.ﬁvwoxzﬂm..w_o: the
i:g.maoum: Hamiltonian for the excited electronic level including the resonant interac-
tion with the external classical field is

By =0, +V(), (7)

where H is the Hamiltonian in Eq. (4), and the interaction potential V(t) is defined
by

V(1) = 5 Bo exp(~u/2)[e™dge | g)e | +¢deg | €)ig ] ®)

Here | g){e | and | e}{g | are electronic state creation and destruction operators, dg. is
the electronic dipole matrix element. . . .

Suppose that the molecule initially is in the ground electronic and S_uumﬁo:& state
| 0); | g). An exciting pulse whose duration is much shorter than .&m.wm:om.Om the
Swnwnmoum arrives at t = 0. Then the time-evolution operator U 3 mv,mwﬁmﬁma with the
vibrations of the nuclei in the excited electronic level can be obtained in the form

QQV = ml:wlmﬁ. @v

5F transforms the ground vibrational state from the E.E& coordinate system to nWo
final one then the operator exp(—iHt) evolves the state in ﬁ.rm upper ._m<m_. Hrocmr the
vibrational coordinates are independent of each other the vibrations in the constituent
t the same time. .
Bow,ﬂmnmmwm“m“ MMMMM_M pulse assuming weak electric field, one can calculate the time-
evolution operator of the vibrational system _%Em the first o&oa SEm-mmvmsm.m:ﬁ vmum.:n.
bation theory. It is found that this operator is the convolution .Om the sowr interaction
potential V(t) in Eq. (8) and the time-evolution operator U(t) in Eq. (9):

N . )
%SH Wmc&mu\ &\.1oxwﬁlmuﬂm\wvmzblsntﬂqQIl“ Cov

M —00
where fiwe, is the energy difference between the electronic levels. After _&m exciting
pulse has awmmw& ie., for the time ¢ 3> u~! the integral can be evaluated. Finally, we
obtain the operator T'(¢) in the form

- St (11)

T(t) = Ne™ =
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where v = Q —w.y — Hy, and N is an unimportant integration constant. The non-
unitarity of the operator results from the perturbative method. The emerging vibra-
tional state in the upper level is

[ %(0); = T() | 0):. (12)

This state is unnormalized since 7'(t) is non-unitary. We note that Eq. (12) is valid
for any polyatomic molecule since we did not exploit the dimensionality of the system

during the derivation. The quantity ;{t(t) | P(t))s is the probability of finding the
molecule in the excited state after the pulse has passed.

3. Diatomic molecules

Let us consider diatomic molecules i.e. when N = 1in Eq. (1). In Eq. (2) the matrix
{#nm} is replaced by a single frequency w’2. In this case the operator 3. describes the
displacement of the equilibrium nuclear distance and the change of the vibrational
frequency from w in the ground electronic state to «’ in the excited electronic level.

Let us assume that the vibrational frequency does not change during the transition.
The emerging vibrational state, depending on the pulse duration, corresponds to several
of the most important states in quantum optics. In the case of extremely short pulses
the wave function is a usual coherent state while in the opposite limit of long pulses it
is the n-phonon number state. Between these limiting cases it is close to a quadrature
squeezed minimal uncertainty state, or, for longer pulses it is the banana-like amplitude
squeezed state, which also appears to be an approximate number-phase intelligent state
associated with Pegg-Barnett phase operator formalism.

If the vibrational frequency changes during the transitions the half-width of the
wave packet is different from that of the coherent state of the upper level:

N h h ~
Af =[5 #1575 = Adgo (13)

The half-width of this wave packet spreads and contracts periodically in time with the
period time half of the vibrational period. This state is a quadrature squeezed coherent
state. When d = 0 we have a quadrature squeezed vacuum state.

Let us now consider two identical Gaussian shaped pulses following each other by
an interval T}

u?

E(t) = m.cal.mn?rmmiu cos (Q(1 + .ﬂm_,vv
+mom|%ﬁlmu£~ cos (9t — Hmr -9)), (14)

here ¢ is a possible additional phase difference between the subpulses.
The vibrational state produced by such a twin pulse excitation has the form

[T, 9)) = e Ju (t+ BN+ |y - 2) (15)

2
lu,8) = [2, dre= 74 |a(r 1))

coh -
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It is assumed, that the vibrational frequency does not orwu.mm during 25. SmamaMMb. .
For extremely short pulses we have coherent superposition states which E.ow e vi-
brational analogue of the optical morn&mnvmon nmenm states. For long, strongly overlapping
to honon number state. .
vEmMm MVMNMMMW_HWQM%?MWWM using probe pulse(s) one may transfer the vibrational cat
mameouwa_..o chemical cat state creating quantum superpositions of &mmnmﬁ Eo_oo:_mw.
In Ref. [10] an Na; molecule was excited by a short men pulse. wf%_v:um meooos
laser pulse the state was excited once more. Depending on the time Qor&\.e Ma%ammw
the two successive pulses the resulting state was a Eo._mnc_w. on another excite  leve
or dissociated fragments. We suggest an 962565. in which aocz.o pulse primary
excitation leads to a Schrédinger-cat vibrational state in level e. Applying a third pulse
when the two parts of the Schrodinger-cat state are the ?ngmmn.?oa mm.hv other one
obtains a superposition of the molecule with its ?mmz.awnm. This chemical cat mﬁp_.uo
can lead us very near to the original paradox of Schrodinger. Let us .m:kuo% spwo.n_:m
molecular superposition is superposition of the c:awammm& mOmB. ofa virus’s UZW with a
denaturalized variant of the same virus. The resulting :.mmrwwm_ammw M:.:m mwmﬁ.m would
be, in fact, a quantum mechanical superposition of a ”living” and a "dead” virus.

4. Polyatomic molecules

For the sake of simplicity we shall consider a two-dimensional mvwmnma.. This Eo%.&
describes nonlinear XY, molecules performing totally symmetric Sg.mSoz.m. .H:.o vi-
brational state in Eq. (12) for a two-dimensional system can be found by inserting a
complete basis set between the exponent part and $f in the ﬁam-mé_:ao: operator
T(t) of Eq. (11):

-2

[(E)) = N T pr ™ 57 % [ )y (nh, mf | ST 00);

T.\ it +=~ w! Iiu

= N s Flagge™ i R g )y (16)
.0 1Mo

Here the matrix elements
Flyn = s(nf,ny | 1] 00), (17)

can be determined by the recurrence formulas in Ref. [15]. . N
The final vibrational state Eq. (16) depends on the duration of nr.m exciting pulse
u~! and the parameters of the transformation of the nuclear potential, that appear

in the matrix elements F’, . in Eq. (17). When the duration of the pulse is very
1772

short the time evolution operator T'(t) in Eq. (11) reduces to U(t) in Eq. (9). Hm. this
case the properties of the state vector Eq. (16) are more mwwmnmi. in @@ coordinate
representation. Using Eq. (3) and the wave function of the m_.o.c:m S_uw.wﬁ_o:u._ state we
find that the vibrational wave function in the excited electronic level is

2 1 14 i _1
(gt 5) = 5(ah, a5 | Y 1 00) = (35 T emdatatvaraiatd, g
L[ wicos?x +wasin®x  H{wa— EL&:..NM v .
wheee b= g wAEm —wy)sin2y  wi cos? x +wysin® x
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A finite exciting pulse results in an entangled state because in Eq. (16)- the exponential
term can not be factorized when u is finite. A very short excitation can result in
an entangled or non-entangled vibrational state depending on the configuration of the
systeni. :

Let us first determine the conditions when the vibrational state is not entangled. As
we mentioned before, the shortness of the exciting pulse is a primary requirement. The
wave function in Eq. (18) can only be separated to the product of two independent wave
functions of the two constituent vibrational modes if the matrix L is diagonal. This
case arises when either x = 0 or w; = wy, i.e., either the normal coordinate system does
not turn during the transition or the ground state vibrational potential has spherical
symmetry.

As an example for a non entangled state induced by a very short pulse, let us consider
the transition when there is only translation and no rotation and no dilatation of the
normal coordinates (d # 0, x = 0, w; = w!). In this case the operator £ = $; and the
matrix L is diagonal. From Eq. (18) we find that the wave function is separable and
the emerging vibrational state is a two-dimensional coherent state. The resulting state
is also a two-mode coherent state if wy = wy, ¥ # 0, and the vibrational frequencies do
not change. When there is not translation (d = 0) in these transitions, the resulting
state is the vibrational vacuum state.

If the vibrational frequencies change in the previous transitions the emerging vi-
brational wave function is also the product of two Gaussian wave packets. But the
half-width of these wave packets are different from that of the coherent state of the up-
per level in the ith mode (Eq. (13)). When d = 0 we have two independent quadrature
squeezed vacuum states in each vibrational modes.

There exist geometrical configurations when a short exciting pulse leads to an en-
tangled state. This is the case when w; # w; and x # 0 in Eq. (18) and d is arbitrary,
that is, the normal coordinate system turns during the transition and the ground state
potential is non-spherical. Then the off-diagonal elements of the matrix L do not vanish

“and the resulting vibrational wave function is given in Eq. (18).

If a system is in an entangled state, the partial systems are in mixture states though
the whole system can be in a pure state. One can use the von Neumann entropy as a
measure of the purity of the state of a vibrational mode:

5(pi) = =Tr(piIn pi), . (19)
where j; is the density matrix of the ith mode. S(p;) = 0 for a pure state. In our case

the origin of the non-purity is the entanglement of the vibrational modes. The sum of
the two entropies provides a good measure for the degree of the entanglement

0 < 5(p1) + 5(p2)- (20)
Deeper entanglement results in larger entropies. The density matrix of the whole system
15 p =| ¥)(¥ |. It can be proved that the von Neumann entropies S(g;) of the two partial
systems are equal to each other for every possible transitions.
In our previous example the rotation of the non-spherical potential leads to an
entangled vibrational state. It should be noted that the larger is the angle of rotation
the more entangled the state is.
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Now we turn to the problem of finite exciting pulse. H.s nEm case the vibrational mnwn.m
in Eq. (16) can not be separated to the product of ﬁio‘ vibrational me.mgm, so the mnmn.m pm_
entangled independently of the change of the geometrical configuration. In mmo.:ﬂmnn:_uw
configurations where a short exciting pulse leads to a non entangled state, a m.Eﬁm pu mmw
results in an entangled state. As an example, let us .Q.Sma.mw the two-mode vibrationa.
coherent state, which is induced by a very short exciting light pulse

] I
Ny Mg

91 92

| h(t)y) = 929212 | nn), (21)

i I}
s

where g; = (w} \wa&. Now let the duration of the pulse be mb..;o. In this case the
role of the quadratic part in the exponent in Eq. (16) becomes important. The von
Neumann entropy analysis shows that a longer pulse leads to deeper .msnmu._m_oami..

If the duration of the exciting pulse is large noa_umz.ma with the <_U.~mfo=m_ periods
then only those terms will survive the Gaussian o:.eom in the expansion m@. (21) for
which v = w)n} +whnj. This is the so called CW limit, <.<o= w:oé: in 2—.@ Emga.:na.
The emerging vibrational states are determined by the mo_ss.oz of this equation for given
vibrational frequencies and photon energy in the exciting :mw.ﬁ (Y= w — weg — Ho). .:
the ratio of the vibrational frequencies are not that of small integer numbers there is
only one solution. In this case there is no entanglement, the modes are separable the
vibrational state of the molecule is the product of two o._mmnmgﬁm.m. In case of m—dwz
integers’ ratio of the vibrational frequencies multiple solutions exists for appropriate
values of 4. Now the arising vibrational state is entangled. In a degenerate case the
two vibrational frequencies are the same. For the coherent state of Eq. (21) the act of
the quadratic operator yields

lBy=N >

ni+nl=vy/w’

(22)

We have described two types of processes which lead to an ngnm_mm. vibrational mﬁwam
in a polyatomic molecule: in the first case the change of the mmoﬂaa.:ow_ configuration
during a sudden electronic transition leads to entanglement év:m in the second case
entanglement comes from the finite excitation process. .Hr.oﬁm is 2 awm.mma.cmm between
these states that appears in the joint phonon number distribution. The ._05.@ phonon
number distributions for a state induced by a short exciting pulse can be obtained from

the matrix elements of the operator Bt
P(n}, ) =| (nf,my | £F 1 00) (23)

In the case of an entangled state induced by a short exciting pulse, the joint nrono:
number distribution can be calculated with the help of the recurrence mo_.B:.Fm in W.mm.
[15]. For the finite exciting pulse the joint phonon number distribution associated with
the state Eq. (22) is a binomial one

7 / 2 2
ny +ny i 93

ny n} _ 5 _ . 94
Py = (AT ) me i e g 00
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The difference between entanglement resulting from the change of the geometry and
the finite excitation process is that while in the first case the joint photon number
distribution function is spread along a n} ~ n) line (correlation), in the second case
the main axis of the photon number distribution is perpendicular to the n) ~ n4 line
(anticorrelation).
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