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Many of quantum cryptography schemes have been proposed based on some as-
sumptions such as no transmission loss, no measurement error, and an ideal single-
photon generator. We have been trying to develop a theory of quantum crypto-
graphy considering realistic conditions. As such attempts, we propose quantum
cryptography with coherent states, quantum cryptography with two-photon inter-
ference, and generalization of two-state cryptography to two-mixed-state cases.

1. Introduction

In these years, our understanding of quantum mechanics is shifting from mere recog-
nition to application of its bizarre properties. The superposition principle and entan-
glement allow us to perform the parallel processing of an exponentially large number
of computing steps (quantum computing) [1]-[3], and the non-cloning theorem [4] pro-
hibits any eavesdropping attempt, which allows us to construct secure means of private
key distribution (quantum cryptography) [6]-{10]. Although quantum computing is
considered to be difficult to realize, quantum cryptography is already at the stage of
experiment [11]. In many of the proposals of the quantum cryptography, however, only
ideal situations are assumed, such as no transmission loss, no measurement error and no
photon-number uncertainty. These assumptions are never met in true situations, and
thus the investigation will be meaningless unless we have a theoretical guarantee for
the security of quantum cryptography in non-ideal cases. We have been developing the
theory of quantum cryptography considering realistic conditions. As such attempts,
we propose quantum cryptography with coherent states [12], quantum cryptography
with two-photon interference [13], and generalization of two-state cryptography to two-
mixed-state cases [14]. This article is to give an overview of these studies.
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2. Quantum cryptography with coherent states

The basic idea of this proposal was motivated by a question: Can the “four-state
cryptography [5]” and the “two-state cryptography [7]” be combined in a compatible
way to construct a new scheme which is better than any of the two schemes? The
answer is “yes” as has been shown in [12]. An ideal single photon source is assumed
in the four-state cryptography, whereas coherent states emitted by a usual laser are
available in the two-state cryptography. In the newly proposed scheme, the merit of
the two-state cryptography is fully used, and the security is also enhanced by the use
of the four-state cryptography principle.

In the four-state cryptography, four polarization states of a single photon are used
to encode a bit information for private key distribution. Two of them form orthogonal
basis and used for encoding “0” and ‘M1”, and the rest of two form the other orthogonal
basis and used in the same way, but any one of the former two states and any one of the
latter two states are chosen to be non orthogonal. Whether the sender (Alice, hereafter)
uses the former basis or the latter basis is hidden to the receiver (Bob, hereafter) and
the eavesdropper (Eve, hereafter). Assuming that Alice sends “0” and “1” with an equal
probability, it can be shown that the density operator for Bob (which is also the density
operator for Eve) when Alice chooses the former basis is equal to the density operator
when Alice chooses the latter basis. Using the non-cloning theorem, it is shown to
be impossible for Eve to duplicate such a state. Thus, any attempts of eavesdropping
without being detected by Alice and Bob will fail. Of course, Bob does not know
Alice’s choice, either. However, by choosing the basis independently, and afterwards
discarding the photons that are known to be measured with different basis, Alice and
Bob can construct their private key with the rest of photons.

In the two-state cryptography, two coherent states having = phase difference con-
taining less than 1 average photons per pulse are used for encoding “0” and “1”. Since
both of the two coherent states are close to the vacuum, they are far from orthogonal
to each other. Therefore, it is not possible for Eve to duplicate the two states again due
to the non-cloning theorem. This makes Eve impossible to eavesdrop the bit without
being detected by Alice and Bob. Of course, Bob is not able to separate the two states,
cither. By means of homodyne detection, however, Bob can sometimes detect the pho-
tons and tell the phase with certainty. Selecting those pulses which were successfully
detected by Bob, Alice and Bob can construct their private key.

In our proposal [12], four coherent states with 0, m/2, w, and 37/2 phases contain-
ing less than 1 average photons are used. Two of them, 0 and =, are used as (non
orthogonal) basis for “0” and “1”, and the rest of two, 7/2 and 37/2, are used in the
same way. After Bob’s detection, the pulses are selected based on not only whether
Bob detected a photon or not but also whether Alice and Bob chose the same basis or
not. In this case, Eve may make a mistake in eavesdropping either because she does
not know the choice of the basis or because she cannot always separate “0” and “1”.
This doubled burden to Eve makes our scheme better in performance than any one of
the four-state cryptography and the two-state cryptography with coherent states. A
quantitative comparison of performance can be made by calculating the mutual infor-
mation between Alice and Eve or between Eve and Bob normalized to the probability
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of detecting Eve. The detailed calculation shows that the leaked information to Eve
in our scheme is always less than that of the four-state cryptography and that of the

two-state cryptography [12].

3. Quantum cryptography using two-photon interference

In the four-polarization-state cryptography [5] and in nr.Omo mngaom E..Ei.zm. mwcm.rw-
photon interference [7] [10] {12], the optical vrmmw fluctuation in ?.m transmission line
significantly aflects the detection error at Bob’s side. Hron.mmozy Alice and Bob should
always calibrate the scheme by compensating the m:.nn:wiou no.ng.m that they ~.5<.m
the identical definition of polarization or phase. H_:m. can Gw difficult Um.nm:mm Alice’s
phase adjustment, Bob’s phase adjustment and transmission line phase noise affect each
other. . . o

Cryptography using two-photon interference [8] was proposed to m<oi this mrmmoc:v\.
This scheme is an application of the Franson interferometer, in which the coincidence
counting of entangled photon pair at the two output ports exhibits o.0m€ a+0p) depen-
dence due to the two-photon interference, where 64 and fp tespectively are the phase
shifts inserted in the Alice’s delay line and Bob’s delay line. Since this interference
effect is nonlocal, the interference is not affected by the phase fluctuation outside the
two delay lines. This means that Alice should only concern the fluctuation in her delay
line and Bob should only concern the fluctuation in his delay line. Thus, Alice and Bob
can adjust their delay lines independently.

In the scheme in [8], however, the coincidence counting is performed between Alice’s
detector and Bob’s detector. This can be practically inconvenient because precise clocks
synchronized between the distant two points are needed. To avoid e.Em. problem, we rmxo
proposed a scheme using two-photon interference in which the coincidence counting is
performed only on Bob’s side.

Fig. 1 shows the schematic view of a possible configuration for our proposal. Two
photons generated by parametric down conversion are sent to the two arms of the
scheme. Alice and Bob agrees that they independently choose between coding 1 and
2 randomly. In coding 1, Alice modulates the phase with 64 = 0 and = for bit “0”
and “17, respectively, and Bob sets 8 = 0. In coding 2, Alice modulates the phase
with 4 = n/2 and 3x/2 for bit “0” and “17, respectively, and Bob sets mw = /2.
The two-photon interference only allows specific pairs of detectors for .ﬁﬁ oomuo&mzom
counting at Bob’s side due to the cos(fd4 + 0p) dependence. The @Ommmzm oo_umwn_mzoo
counting results are summarized in Table 1 for all combinations of Alice’s choice and
Bob’s choice. One can see that Bob can obtain the bit value only when they choose the
same coding. It is also easy to see that Alice’s two states corresponding to “0” and “1”
are orthogonal within any of coding 1 or 2, but that any state in coding 1 m:.a any state
in coding 2 are non orthogonal having 7/4 angle in the Hilbert space. This is exactly
the same situation as in the four-polarization-state cryptography. The principle of this
scheme is, therefore, nothing but that of the four-polarization-state cryptography. It
is obvious, however, that no arbitrary-polarization-maintaining fibre is required and
no phase fluctuation compensator is required. Also, Alice and Bob need not have a



214
N. Imoto et al.

common clock because it is only Bob who should watch the coincidence counting.
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Fig. 1. .>~.~ implementation of proposed quantum cryptography using two-photon interference.
The coincidence counting is performed only at Bob’s side.
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Table 1. Coincidence counting pair for possible combination of the bit value Alice’s choice
and Bob’s choice. ' '

4. Quantum cryptography based on two mixed states

In any scheme proposed so far, the states prepared by Alice have been assumed to
be pure mn@mm. In the real situations, however, the light source usually has excess noi
which requires Alice’s states to be expressed by mixed states, and so far, there has WEP
no attempt to treat such cases in the theory of quantum nwwvaomnwﬁrwq -

As the first step of such attempt, we have considered the mo:oe.m_:mmy:o: of th
Bennett’s two-state scheme to mixed state cases [14]. The outline of the theory is mM
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follows: Assuming that the states prepared by Alice are mixed states, Eve can have a
variety of options in handling the quantum signal on the way of the transmission line.
We consider possible four eavesdropping strategies step by step, and obtain, in each step,
a necessary condition to defend the communication from Eve’s attack. The necessary
condition is therefore becomes severer step by step, and the finally obtained condition
is the necessary condition for the security against the four kinds of Eve’s attack. This
final condition is also shown to be a sufficient condition for the security against any kind
of Eve’s attack. The obtained necessary and sufficient condition thus gives a guiding
principle in constructing a two-state cryptography with noisy light sources.

The result of this study gives a simple expression for the necessary and sufficient
condition for the security of the two-mixed-state cryptography, which is described as

P = R(0)pRI(9) (1)

where EAE and E: are the mixed states prepared by Alice, and R(f) is a rotation
operator defined by a direct product of R;(6) as

RO) = [ r:i(0) (2)
i=1

where R;()’s are rotation operator in 2-dimensional Hilbert subspaces properly defined
to give a decomposition of the full Hilbert space to make a subspace-conserving projec-
tion possible, and n is the dimension of the Hilbert subspace spanned by 2 (which is
shown to be the same for the Hilbert subspace spanned by p(1)) [14]. Eq.(1) tells that
the structure of the two mixed states must be identical in the sense that the states are

connected by a rotation operator.
4. Discussion

It is important to develop the theory of quantum cryptography considering the reality
because all of the studies can become meaningless without knowing the conditions for
the security of quantum cryptography in non-ideal cases. Privacy amplification is of
course a logical approach for this purpose, but it is “amplification” of security if there
is any. It is thus important to examine the security itself under realistic conditions
from the fundamental point of view. Not only for this practical reason, we believe that
there is a necessity to do so to find a more general, systematic principle, which may
be deduced from the case studies of quantum mechanics and information control under
different circumstances. As such attempts, we have proposed quantum cryptography
with coherent states (attempt to use a normal light source with higher security), quan-
tum cryptography with two-photon interference (attempt to avoid the loss effect and a
complex interferometer stabilization), and generalization of two-state cryptography to
two-mixed-state cases {attempt to find the security condition with a noisy light source).
We hope that these step-by-step considerations will reveal the essence of the quantum

information processing.

Acknowledgements We thank to N. Gisin of University of Geneva, T. Mor of the
Technion-Israel Institute of Technology, and M. Werner of NTT Basic Research Labo-

ratories for the fruitful discussions and collaborations.



216 N. Imoto et al.

References

[1] D. Deutsch: Proc. R. Soc. London, Ser. A 400 (1985) 97

[2] P.W. Shor: in Proc. 35th Annual Symposium on Foundations of Computer Science
(IEEE Computer Society Press, New York, 1994) p.124

[3] A. Ekert, R. Jozsa: Rev. Mod. Phys. 68 (1996) 733
[4] W.K. Wooters, W.H. Zurek: Nature 299 (1982) 802

[5] C.H. Bennet, G. Brassard: in Proc. of IEEE Int. Conf. on Computers, Systems and
Signal Processing, Bangalore, India (IEEE, New York, 1984) p.175

[6] A.K. Ekert: Phys. Rev. Lett. 67 (1991) 661
[7] C.H. Bennett: Phys. Rev. Lett. 68 (1992) 3121
[8] A.K. Ekert, J.G. Rarity, P.R. Tapster, G.M. Palma: Phys. Rev. Lett. 69 (1992) 1293
[9] C.H. Bennett, S.J. Wiesner: Phys. Rev. Lett. 69 (1992) 2881
[10] L. Goldenberg, L. Vaidman: Phys. Rev. Lett. 75 (1995) 1239
[11] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail: J. Cryptol. 5 (1992) 3; A. Muller, J.
Breguet, N. Gisin: Europhys. Lett. 23 (1993) 383; J.D. Franson, H. Ilves: Appl. Opt.
33 (1994) 2949
[12] B. Huttner, N. Imoto, N. Gisin, T. Mor: Phys. Rev. A 51 (1995) 1863

[13] N. Imoto, M. Werner, M. Koashi: in Technical Digest, XXth International Quantum
Electronics Conference IQEC’96 (Sydney, Australia, July 14-19, 1996) p. 271

[14] M. Koashi, N. Imoto: Phys. Rev. Lett. 77 (1996) 2137

[15] J.D. Franson: Phys. Rev. Lett. 62 (1989) 2205; J.D. Franson: Phys. Rev. Lett. 67
(1991) 290 :




