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We propose a realistic scheme for a quantum beam separator for light. Our model
consists of a single atom traversing a resonator. Depending on the internal state of
the atom light will be reflected off or transmitted through the resonator. We have
investigated the performance of this device under realistic operating conditions
using quantum Monte Carlo wavefunction simulations. We have found the time
dependence of the coupling and the measurement backaction of the continuous
measurement process of the output light to significantly influence the behaviour
of the device.

1. Introduction

Quantum mechanics itself imposes no fundamental limit on the size of an object
that could be in a superposition state [1]. There is no empirical evidence, however, that
macroscopic superpositions occur in our world. The most famous hypothetical example
of such a macroscopic superposition is due to Schrodinger who devised a gedanken
experiment which leaves a cat in a state of being dead and alive at the same time. This
is accomplished by transforming a microscopic superposition state into a superposition
of a macroscopic object (now often called a cat state) by creating quantum entanglement
of both entities. In this way the occurence of superposition states in the macroscopic
world seems possible [2, 3]. However, any experimental confirmation would involve
the observation of interference between two manifestly macroscopic states of a large
object. This necessitates preservation of coherence, i.e., throughout the experiment the
system state must not get entangled with the state of the environment (the nature of
which depends on the type of system used) and thus poses an increasingly challenging
technical problem as the size of the system is increased.

Other theories (beyond standard quantum mechanics) [4] predict fundamental limits
for the distances over which coherence can be preserved. The ideal experiment to test
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these theories would make use of a device that can generate a superposition state of large
and complex objects, separated by large distances and completely decoupled from the
environment. If the objects are subsequently reunited and superimposed they should
exhibit interference effects [5]. Recently, an experiment of such type has been carried
out on a single ion [6].

Alternative proposals for creating superposition states rely on the use of a large
number of photons contained in two separate microwave resonators. By sending a
single atom through both resonators a superposition state with all photons being either
in the one or the other resonator can be generated [2]. While being in principle within
the limits of present day technology, this proposal suffers from the limited size of the
achievable spatial separation of the two cavities. Moreover, a direct observation of
microwave photons is difficult to achieve.

We will show that with present-day technology it should be feasible to prepare a
superposition state of a large number of optical photons in such a way that all of the
photons are either in one or the other arm of an optical interferometer (cf. Ref. [7]).
As an entrance beam splitter of the interferometer we need a quantum gate {(quantum
mirror) which can be in a superposition state of complete transmission and reflection. In
this way the photons (laser pulse) get entangled with the mirror state and will then form
a macroscopic superposition of the sought type. In contrast to this a conventional beam
splitter puts each individual photon in a superposition state of both paths independently
of all the other photons, so that no macroscopic superposition is created.

Here we fathom the realisability of a quantum mirror made up of an optical high-Q
cavity traversed by an atom in a superposition state of two long-lived atomic levels.
Contrary to previous work [7] we consider an open system. Using Monte-Carlo wave
function simulations (which implement a continuous measurement process of the light
leaving the resonator with the concomitant backaction on the system dynamics, cf.
e.g. [8]) allows us to get close to experimental reality by including a time dependent
atom-cavity coupling, spontaneous emission as well as cavity loss. We found these to
significantly affect the performance of the device.

2. The Model

We consider a double ended optical resonator illuminated at one port with off-
resonant. light. As long as the cavity is empty the light will be reflected back off
the driven port. If a switchable active element placed inside the resonator can shift
the cavity into resonance so that all light gets transmitted, we have implemented a
“classical” gate for light. What now if our active medium is a quantum object that can
be in a superposition of its on and off -states? Is this system equivalent to an ordinary
classical random beam splitter or will the quantum nature of the medium leave its
fingerprint on the light leaving the resonator?

A single three-level atom acts as our active medium. The relevant two states of the
atom are the ground states Jabelled {0)4 and |1),. State {0}a does not couple to the light
in the resonator [9], while the coupling between the cavity-field (resonance frequency
weav) and the atom on the transition from |1}, to an excited state |e}, (transition
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frequency wo) can shift the resonator into resonance with the incoming field (frequency

wp) at port I. ‘
A mathematical description of this system is effected by the following master equa-

tion for the density operator p of the atom-cavity system:
—i[Hp + Hic, Pl — A\IIU Ki Q&Fnr — 2apa')
i=1,2
¥ ({Ocer P} 4 = 2016pTe1) (1)

p

where the driving of the resonator and the cavity-atom interaction are described by H,
and Hjc, respectively:

H, = —iv2K10in Aﬁt —a), (2)
Hjc = Acala+ Agoee— ig(t) Anﬂqx - o.&av , (3)

with Ag = Weay—wp and Ay = wo—Wp. Cavity loss through ports 1 and 2 occurs at rates
2x;. Spontaneous decay takes place from level |e)q to level |1), at a rate 2y. The time-
dependence of the coupling strength g(t) = §(z(t)) = @o\/\wlm w) exp([z(t) ~ zo)?/2w?)
is due to the assumed ballistic motion of the atom through the Gaussian transverse
mode profile of width w.

2.1. Passive dispersive intracavity medium

Let us first consider a resonator filled with a dispersive medium. Using standard
input-output formalism [10] we find for the light emanating from the two ports of the
resonator ’

Aﬁwzuv = I'in, and Aawcnv = latin, va
with ” 5
— —2./K
Q.H,S §+s‘ 9 and t= Ha.m , (5)
Ky + K1+ 18y K + K1 + 18y

where Ay = A+ A (A is the shift induced by the dispersive medium). In the limit
of perfect impedance matching, ie., K1 = K2, a large mistuning Ay > ki causes all
light to be reflected back at port I, while for A = —A, all light will be transmitted
through port II as intended. The cavity thus behaves like an ordinary beam splitter,
ie., |r|2+ [t = L, although the finite storage time of energy inside it gives rise to a
finite delay in the transmission.

2.2. Coupled cavity-atom system

To get a grasp of the dispersive effect of a single atom [11] inside the resonator we
diagonalise Hjc, cf. Ref. [12]. The ground state of the coupled atom-cavity system is
denoted eg) = {vac). ® {1},. Furthermore, there are infinitely many doublets of dressed
states (approximately hwp apart) parameterised by an index n, corresponding to the
number of cavity photons for the atom in state |1)q. We find

Hyo = 3 h (BN + BN (6)
n>1
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with B (1) = nAc+ /2 [6%/4+ ng?(t)] U2 4nd § = Ag — Ac. The eigenvectors are
given by

1) = (ig(0valn - De® le)a + (8 = EFIme @ 1) V5, ()

where N* are suitable normalization factors. In Fig. 1 we schematically depict the
three lowest eigenvalues as functions of g(z(t)) for § > 0. We realise that the coupled
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Fig. 1. Adiabatic eigenenergies vs. position of the three energetically lowest eigenstates leo),
le)-

atom-cavity system is shifted into resonance with the coherent pump-field at maximum
coupling strength gm = max(g(t)) if we choose A, = —8/2+[62/4+¢%)H/2. In this limit
we predominantly pump the component {1)c ® |1)o of _mva provided that Ay 3> gm is
satisfied. This minimises spontaneous emission from state |[vac). ® |e}s. At the same
time we have to require that Ac 2> K1 + K2 is satisfied. This ensures that without an
atom present in the proper internal state the resonator will almost completely reflect
the driving field. For this we need: Ag > gm and (A = —6/2+ [62/4 + gZ1M?) >
k1 + K. This can only hold for sufficiently strong atom-cavity coupling, i.e. gm >
f1+ K2,7; (9] In this limit the resonator switches from almost total reflection to nearly
perfect transmission and back as a single atom flies through {11].

3. Gate Dynamics

In two steps we will now show that our device is substantially different from any
classical apparatus. First we will demonstrate that we have created an efficient switch.
As outlined above, a significant amount of light can only be transmitted if the atom is
in its internal state |1),. If we inject atoms in an equally weighted superposition state
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of its ground states {0), and {1)s then there should be a strong correlation between
the number of photons having been transmitted through the cavity and the result of
a subsequent state measurement on the atom. The detection of a single transmitted
photon is thus likely to trigger a whole avalanche of subsequent detections. Likewise,
if hardly any photons are transmitted the state measurement should return [0). In
an ideal setting one would first send the atom through the cavity thereby creating a
superposition state of a many photon light pulse in the transmission and reflection path
of the mirror which is then subsequently analysed. The long transit time of the atom
through the resonator (~ 100us)in this case requires long optical delay lines (=~ 30
km). To demonstrate the basic principle we use a more practical setup and analyse the
output light, while the atom is still inside the resonator this implementing a continuous
measurement [13].

3.1. Direct detection

We numerically simulate such a continuous measurement as depicted in Fig. 2 with
the adjustable mirrors in their positions 1. After the atom has flown through the
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Fig. 2. Diagrammatic representation of the setup. By help of the movable mirrors we may
switch between direct detection (1) and interferometric detection (2).

resonator its internal state will be measured by detector I11. The stochastic Schrodinger
equation (SSE) for the conditional wave function [¥)c corresponding to the density
matrix equation (1) can be simulated using a quantum Monte Carlo algorithm. it reads
[13,14]
¥ = —iHea|¥)edt + Y (Ajej = 1) dN;[¥e, (8)
J
with Heg = He—1 MU,* &.&. and the X; arbitrary coefficients. The mean number of counts

of type j in Jt, 1+ dt] is given by (dN;(t))e = nAe:v_maw&._éva dt. From Fig. 2 and using
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@in = \/2k1a we make the identifications: ¢ = Vrila+a), ca = /Kza and c3 = \/T01e-
In addition we have set H, = $H, + Hjc. The number processes N;(t) denote the
number of counts in detector j up to timet, satisfying dN;(¢)d Nk (t) = 6;xdN;(¢) and
dN;(t)dt = 0. In Fig. 3 we have plotted the normalized distribution prr(n,T) of the
pumber n of transmitted photons during the transit time 7' Correlating the count
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Fig. 3. Distribution (12000 realizations) of the number of photons counted by detector 11
during the transit time 7' (0) and the distributions conditioned on a atomic state measurement
yielding |0) () and 1) (x), respectively. Using £/2 = k1 = &3 the parameters are T = 120,
gm/K = 11.5, Dafx = 40, Ac/r = 3.32, @ = 0.35. The inset depicts the photon flux integrated
over a period 2k for detectors I (e) and Il (b). Curves {f/d) and (c/a) represent the same
conditioned on a state measurement yielding 0 or 1, respectively.

sequences with the result of an atomic state measurement by detector III reveals the
strong projective character of the setup. From such postselection we obtain two partial
distributions of distinctively different mean values. In the ideal scenario already the
first “click” at detector II would project the atom into state |1), and determine all
other clicks. In practice due to the finite Q of the cavity a small field builds up even
inside the empty resonator leading to a small number of background counts degrading
the correlation. The inset of Fig. 3 displays the time dependence of the total and
the postselected count rates of the two detectors thereby clearly demonstrating the
switching property. .

3.2. Interferometric detection

From the evidence presented this far, one cannot conclude that our device is truely
quantum, as one would find similar behaviour for a classical random switch, cf. Sec. 2.1.
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with Ag random. As stated in the introduction, a macroscopic superposition state may
only arise from a physical process during which quantum entanglement is established
between a microscopic and a macroscopic entity. The nonclassical nature of our switch
can thus only be ascertained in an experiment sensitive to quantum coherence. The
ambiguity between our system and a classical random switch arises from the fact that
the setup discussed above provides which-path information encoded in the atom. This
set-up does not distinguish between an atom in an equally weighted mixture of its states
|1) and |0) or in a pure superposition state. We thus modify our setup such that clicks
at the detectors no longer provide which-path information. Assume that the movable
[mirrors in Fig. 2 are now in their positions 2. The detectors will then measure both
output fields after they have been recombined on a 50—50 beam splitter. The dectectors
[ and II measure the fields ¢)y;:

e = VZa = (e+[L+ Rea), (9)
2y = Viey=—vF (a+[l-Re¥a), (10)

with R = +/ka/k1. The phase ¢ is optional and may be varied by inserting a phase
shifter. The photon flux Ay = AwaHSv at detector 1 at time t will then be given by

Ar = m(®+[14+ R*)(ata) + afa+a")) +
4+ & Rcos¢ (2(a'a) +Q?+:J+S§5ialnﬁvv. (11)

_Choosing ¢ = 0 detector 11 will merely see a coherent field, cZ,: = /F1a. This means
that clicks registered by detector I do not provide any information about the state of
the coupled atom-cavity system. Similarily detector I measures a quantity proportional
to the total output field which also cannot yield which-path information 3. Clicks at
detector I will only give rise to a rotation of the atomic coherence ({cg1)) in the complex
plane. As they occur at random times the net result will be a random phase shift of the
atomic coherence vector. This implies that the modulus of the initial atomic coherence
will survive the detection sequence and the atom stays in a superposition state.

The quantum nature of our switch becomes apparent by projecting the final atomic
state onto a superposition of the two atomic ground states and correlating the result with
the count sequence obtained from detector L. In the inset of Fig. 4 we plot the average
photocurrent fcurve (a)], and the conditioned currents obtained from a projection on
|0)i|1) [curves (b/c)] as functions of time. (in practice this is accomplished by applying
a m/4-pulse to the low-frequency transition between the two ground states of the atom
before it reaches detector II1.) Curves (b) and {c) exhibit a strong variation which
cannot be explained classically. The difference count rate A between detectors I and II
is directly related to the correlation between the light in both arms of the interferometer,
ie., 6A(1) = ((aly)tad, + hc). Hence, using Eq. (4) this quantity vanishes for a
classical random switch ?, as one would intuitively expect. The randomness of the
phase-shift incurred by the atomic state somewhat limits the usefulness of our approach.

3Provided there is no other significant loss mechanism present in the system.
4This follows from Sec. 2.1. for k1 = K2.
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Fig. 4. Distribution of the modulus of the final atomic coherence |poi1(T)| for the same pa-
rameters as in Fig. 3 and v = /2. The inset depicts the photon flux sampled by detector 1
over periods of 267! (a). Curves (b/c) are obtained by correlating the click sequences with an
atomic state measurement yielding [0) F #{1).

Through postselection we check whether a certain total phase shift of the atomic state
coincides with a certain pattern in the count sequence. Doing so is of course only
meaningful if the spread in the total phase shift is less than 2. Since the atom interacts
with a field whose envelope varies with time, this gives a limit on the maximum size of
the pulse area for which this simple postselection technique can be applied.

An alternative method to demonstrate the coherence properties of the reflected and
transmitted photon pulses lies with the observation of the atomic coherence. Knowledge
of the path of the light pulse immediatly yields information on the atomic state and
the atomic coherence between the two ground states collapses. If atomic coherence is
preserved during the interferometric measurement this would prove the superposition
properties of the light field, i.e., our ignorance of the path the light took. We show
this in Fig. 4, where the normalised probability distribution of the modulus of the
atomic coherence poi(T) = c{o10(T))e is plotted. The contribution at the origin is
due to trajectories involving a spontaneous decay of the atom. The backaction of the
interferometric measurement on the atom occurs in the form of random jumps in the
phase of the atomic coherence. This is a genuine feature of the chosen setup, where
the field measurement is concurrent with the atom field interaction. A setup where
the measurement of the fields starts after the atom has left the cavity would avoid
these complications but require long optical delay. Nevertheless the preservation of the
atomic coherence, as demonstrated above suffices to infer the superposition character
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of the photon pulses.

4. Conclusions

Based on a numerical experiment we have thus shown that the use of a high-Q
optical cavity together with an atom in a long-lived superposition state allows us to
prepare highly delocalized quantum superpostion state of a many photon light pulse.
Its coherence and decoherence properties can be analysed by interferomeric techniques.
Although a practical realisation seems experimentally challenging, several fundamental
tests of quantum theory might be possible with such a source based on currently avai-
lable technology. In view of the longer storage times and improved detection schemes
for atomic coherence, also a setup based on trapped ions seems possible, provided a
sufficiently good optical cavity is available. As a final point we wish to remark that the
recent success in preparing degenerate quantum states for many atoms {(BEC) allows
speculations about analogous schemes to create nonlocal superpositions of many particle
states.

Acknowledgements This work was supported by the Austrian Science Foundation
(FWF) under contract S06506-TEC. We thank G. Rempe, M. Marte and H. Weinfurter
for helpful discussions.

References

[1] E. Schrédinger: Naturwissenschaften 23 (1935) 805; 23 (1935) 823; 23 (1935) 844

{2] L. Davidovich, M. Brune, J.M. Raimond, S. Haroche: Phys. Rev. A 53 (1996) 1295
and references therein

[3] P. Tombesi, D. Vitali: Phys. Rev. Lett. 77 (1996) 411
[4] E. Wigner: in The Scientist Speculates, ed. by 1.J. Good (William Heinemann, London,
1962)

[5] G. Badurek, H. Rauch, A. Zeilinger: Physica 151B (1988) 82; Special Issue on Optics
and Interferometry with Atoms, ed. by J. Mlynek, B. Balykin, P. Meystre, Appl. Phys.
B 54 (1992); J. Schmiedmayer et al.: Phys. Rev. Lett. 74 (1995) 1043

[6] C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland: Science 272 (1986) 1131
7] J. Jacobsen et al.: Phys. Rev. Lett. 74 (1995) 4835

] A.M. Herkommer, H.J. Carmichael, W.P. Schleich: Quantum Semiclass. Opt. 8 (1996)
189

Q.A. Turchette et al.: Phys. Rev. Lett. 75 (1995) 4710

[10] C. Gardiner: Quantum Noise (Springer, Berlin, 1991)

{11] In a recent experiment Kimble and coworkers have demonstrated that a single atom can
reduce the light transmission of the cavity by a factor of almost 100.

[12] J. Dalibard, C. Cohen-Tannoudji: J. Opt. Soc. Am. B 2 {1985) 1707

{13] P. Zoller, C. Gardiner: Quantum Noise in Quantum Optics: The Stochastic Schrodinger
Equation, unpublished

[14] A. Barchielli: Quantum Opt. 2 (1990) 423

Py
)

—
=



