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How well can one copy an arbitrary quantum state? It has been known since
the results of Wooters and Zurek that perfect copies cannot be made. This then
leads one to ask how well one can do. We analyze the copy machine discussed by
Wooters and Zurek in their proof of the "No Cloning” theorem, and a second one in
which the quality of the copies is independent of the input state. Problems arising
from the entanglement of the copies are discussed and measurement schemes to
overcome them are presented. We also find fundamental limits on the quality of
the copies which are produced, both in the case of a machine which makes 2 copies
and one which makes n copies. Quantum logic circuits which realize the action of
a quantum copier are presented.

1. Introduction

One of the most fundamental differences between classical and quantum informa-
tion is that while classical information can be copied perfectly, quantum cannot. In
particular, we cannot create a duplicate of an arbitrary quantum bit (qubit) [1] with-
out destroying the original. This follows from the no-cloning theorem of Wootters and
Zurek [2] (see also [3,4]). There are many consequences of this theorem. For example,
if one has a string of qubits which one would like to process in more than one way, it
represents a serious limitation. With a string of classical bits, one could simply copy the
string and process the original one way and the copy another. Quantum mechanically
this is impossible. On the other hand, the fact that information cannot be copied is
sometimes an advantage. One can view the impossibility of quantum copying as one
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of the main reasons why quantum cryptography works. In a quantum cryptographic
system [5,6] qubits are exchanged between a sender (Alice) and a receiver {Bob) in such
a way that the presence of an eavesdropper (Eve) can be detected. If quantum copying
were possible the eavesdropper could simply copy the qubits which Alice is sending
to Bob, and they would not be able to detect this procedure. This would leave the
eavesdropper with a perfect record of their communication. The fact that quantum
information cannot be copied rules out this possibility.

Even though one cannot copy quantum information perfectly, it is useful to know
how well one can do. One would like to know to what extent it is possible to split
the information in a given qubit among several others. In addition, if it is possible to
make close to perfect copies quantum cryptographic schemes could still be at risk {7].
Finally, quantum copying can become essential in storage and retrieval of information
in quantum computers [8].

If one is only interested in producing imperfect copies, however, then it is possible
to design machines (actually, find unitary transformations) which copy quantum states.
A number of these were analyzed in a recent paper by two of us [9] (see also [10-12)).
The copy machine considered by Wootters and Zurek (2], for example, produces two
identical copies at its output, but the quality of these copies depends upon the input
state. They are perfect for the basis vectors which we denote as |0) and |1}, but,
because the copying process destroys the off-diagonal information of the input density
matrix, they are poor for input states of the form (11)+€'#]0)) /2, where ¢ is arbitrary.
A different copy machine, the Universal Quantum Copy Machine (UQCM), produces
two identical copies whose quality is independent of the input state. In addition, its
performance is, on average, better than that of the Wootters-Zurek machine, and the
action of the machine simply scales the expectation values of certain operators. In
particular the expectation value in one of the copies of any operator which is a linear
combination of the Pauli matrices is 2/3 that of its expectation value in the input state.
Gisin has recently generalized the UQCM for the cases in which there are N identical
inputs and N 4 1 outputs, that is one copy is produced, and also in which there are N
inputs and N + 2 autputs, i. e. there are two copies produced [13]. In both cases all
of the output copies are identical and their fidelity, that is their overlap with the input
state, goes to 1 as N goes to infinity.

2. Universal quantum copying machine

.bma us assume we want to copy an arbitrary pure state [¥)ae which in a particular
basis {[0)4,, [1)4,} is described by the state vector |¥),,

ey = [0, + Bl1)ay; a =sinde’; B = cos. (1)
The two numbers which characterize the state (1) can be associated with the “am-

plitude” |a| and the “phase” ¢ of the qubit. Even though ideal copying, i.e., the
transformation

th\vno == _@vna_@vn_ AMV
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is prohibited by the laws of quantum mechanics for an arbitrary state (1), it is still
possible to design quantum copiers which operate reasonably well. In particular, the
UQCM [9] is specified by the following conditions.

(i) The state of the original system and its quantum copy at the output of the quan-
tum copier, described by density operators p52**) and AL, respectively, are identical,

l.e.,
P = 55 3)

(ii) If no a priori information about the in-state of the original system is available,
then it is reasonable to require that all pure states should be copied equally well. One
way to implement this assumption is to design a quantum copier such that the distances
between density operators of each system at the output Qmw.:c where j = 0, 1) and the
ideal density operator 5% which describes the in-state of the original mode are input
state independent. Quantitatively this means that if we employ the square of the

Hilbert-Schmidt norm
d(pr; p2) = Tr [ (1 = f)°] 4

as a measure of distance between two operators, then the quantum copier should be
such that
S@%zcwmm&v = const.; j=0,1 (5)

Here we use the subscript 1 in the definition of the distance di, to signify that this is
the distance between single-qubit states.

(iii) Finally, we would also like to require that the copies are as close as possible
to the ideal output state, which is, of course, just the input state. This means that we
want our quantum copying transformation to satisfy

di (P 4G0) = min {du (03 460} (i=0,1). (6)

Originally, the UQCM was found by guessing a transformation which contained two free
parameters, and then determining them by demanding that condition (ii) be satisfied,
and that the distance between the two-qubit output density matrix and the ideal two-
qubit output be input state independent. That the UQCM machine obeys the condition
(6) has only been shown recently [13,14].

‘The unitary transformation which implements the UQCM [9] is given by

_Ovan;@vh = /\W_OOvaan_ _ \ﬂva + /\W_..Tvnaf_ ,_\vn.

Daol@) — ,\w_:vss_tij\w_iss_35 (7)

1 3
_..Tvnen: = I/\‘MIA:OVNSS + _C_Vacn_v, Amv

where
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and satisfies the conditions (3-6). The system labelled by ag is the original (input) qubit,
while the other system a; represents the qubit onto which the information is copied.
This qubit is supposed to be initially in a state |0),, (“blank paper” in a copier). The
states of the copy machine are labelled by z. The state space of the copy machine is
two dimensional, and we assume that it is always in the same state |@), initially. If
the original qubit is in the superposition state (1) then the reduced density operators
of both copies at the output are equal [see condition (3)] and they can be expressed as

1 i
b?:nv — I_‘H\vnu.AG_ + m_ekvﬁ:A@._._“ J=0,1 va

where
_@.—.vnm = Q*_Ovnn. - Q,»_Hvau; AHOV

is the state orthogonal to [¥),,;. This implies that the copy contains 5/6 of the state

we want and 1/6 of that one we did not.

We note that the density operator t?::

“scaled” form:

given by Eq. (9) can be rewritten in a

, " Hlm; .
\Nmélm%g gmrQuo_r ﬁ:
which guarantees that the distance (4) is input-state independent, i.e. the condition (5)
is automatically fulfilled. The scaling factor in Eq. (11) is s; = 2/3 (j =0, 1).

3. Copying network

In what follows we show how with simple quantum logic gates we can copy quantum
information encoded in the original qubit onto other qubits. The copying procedure can
be understood as a “spread” of information via a “controlled” entanglement between
the original qubit and the copy qubits. This controlled entanglement is implemented by
a sequence of controlled-NOT operations operating on the original qubit and the copy
qubits which are initially prepared in a specific state. .

In designing a network for the UQCM we first note that since the state space of the
copy machine itself is two dimensional, we can consider it to be an additional qubit.
Our network, then, will take 3 input qubits (one for the input, one which becomes one
the copy, and one for the machine) and transform them into 3 output qubits. In what
follows we will denote the quantum copier qubit as b; rather than z.

The operation of this network is such, that in order to transfer information from the
original ag qubit to the target qubit a; we will need one idle qubit b; which plays the
role of quantum copier.

Before proceeding with the network itself let us specify the one and two-qubit gates
from which it will be constructed. Firstly we define a single-qubit rotation M&.AS which
acts on the basis vectors of qubits as

@.As_or
R;(0)[1);

cos 0]0); -+ sin O]1);;
—sin 8]0}, -+ cos 0{1);.

(12)
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Fig. 1. Graphical representation of the UQOCM network. The logical controlled-NOT Pu given
by Eq. (13) has as its input a control qubit (denoted as s ) and a target qubit (denoted as o ).
The action of the single-qubit operator R is specified by the transformation (12). We separate
the preparation of the quantum copier from the copying process itself. The copying, i.e. the
transfer of quantum information from the original qubit, is performed by a sequence of four
controlled-NOTs. We note that the amplitude information from the original qubit is copied in
the obvious direction in an XOR or the controlled-NOT operation. Simultaneously, the phase
information is copied in the opposite direction making the XOR a simple model of quantum
non- demolition measurement and its back-action.

We also will utilize a two-qubit operator (a two-bit quantum gate), the so-called
controlled-NOT which has as its inputs a control qubit (denoted as ¢ in Fig. 1) and a
target qubit (denoted as o in Fig. 1). The control qubit is unaffected by the action of
the gate, and if the control qubit is |0), the target qubit is unaffected as well. However,
if the control qubit is in the |1) state, then a NOT operation is performed on the target
qubit. The operator which implements this gate, Py, acts on the basis vectors of the
two qubits as follows (k denotes the control qubit and ! the target):

Wmt_ov»_oy = [0)«]0):;
NE_OV\A:Y = _ova_c: Ava
P10y = [1ell)
Pl = [D«]0).

We can decompose the quantum copier network into two parts. In the first part the
copy (a;) and the idle (b;) qubits are prepared in a specific state Ev%ﬂw ). Then in the
second part of the copying network the original information from the original qubit ag
is redistributed among the three qubits. That is the action of the quantum copier can
be described as a sequence of two unitary transformations

[9)5D10)a, 10%e, — [T — ()0, (14)

ayby agaiby

The network for the quanium copying machine is displayed in Fig. 1.
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3.1 Preparation of quantum copier

Let us first look at the preparation stage. Prior to any interaction with the input
qubit we have to prepare the two quantum copier qubits {a; and b;) in a very specific

state _ev%ﬂ.i. If we assume that initially these two qubits are in the state

() = [0)a, 10, (15)

aiby

then the arbitrary state |¥)(P7e?)

ayby
[EYEP) = C1100)a,6, + C5l01) a6, + Cs|10ars, + Cal11)ars,, (16)

with real amplitudes C; (such that Muwnp C? = 1) can be prepared by a simple quantum

network ?wm the “preparation” box in Fig. 1) with two controlled-NOTs Py, and three
rotations R(f;), i.e.

_evmﬂtv = m\wnnﬁmwv@o_n_mﬁvn A%wv@n-s Nanﬁaﬂv_cvf _Ovs. AHNV

Comparing Eqs. (16) and (17) we find a set of equations

cosf; cos B3 cosf3 4 sinfy sinf,sinfly = Ci;
—cos 0y sin @y sin f3 + sin 6, cosfy cos 3 = Cy; (18)
cos 0 cosfasinfl; —sinf; sinfy cos 3 = Cs;

cos 0 sin @3 cos 3 + sin f; cos f sin 65

Qﬁ IR

i

from which the angles 0; (j=1,2,3) of rotations can be specified as functions of para-
meters C;. In particular, for the purpose of the UQCM we need that

re 1
[y Prer) = 75 (200)aup, +101)ase, + [11)as,) (19)

With the help of Eq. (18) we find that the rotation angles necessary for the preparation
of the state given in Eq. (19) are such that

V5

; cos 20y = ——; cos 203 =

cos 26, = 7

(lm\w. (20)

8-

3.2 Quantum copying

Once the qubits of the quantum copier are properly prepared then the copying of

the initial state _va.oi of the original qubit can be performed by a sequence of four
controlled-NOT operations (see Fig. 1)

[0)0, = Py g Pay oo Pagby Pagay [ W) 6™ 1) ETeP) (1)

agasb; arby

When this operation is combined with the preparation stage, we find that the basis
states of the original qubit (ag) are copied as described by Eq. (7) with | 1), = [0)s,
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and | {)z = |1)s,- When the original qubit is in the superposition state {1) then the
state vector of the three qubits after the copying has been performed reads

aévAQ:nv = _eOvmcnw_Ovep + _e~vnan_ *vat AMMV

agaib;

with

1 2 1
_Avcvnof = Q/\W_oovnan- + \Qa_u_lvecfw _0~v=ca_ = Q/\w_wmvacf + Q!/\IW_.TVE_S. Awmv

From this it follows that at the output of the quantum copier we find a pair of entangled
qubits in a state described by the density operator
m?unv = _QOVncnnAeo_ + _ewvnon_ AGH_ AMAV

Goay

Each of the copy qubits at the output of the quantum copier has a reduced density
operator mmw.iv (j = 0,1) given by Eq. (11). The distance ngw.::wmwwsv (7 =0,1)
between the output qubit and the ideal qubit is constant and can expressed as a function
of the scaling parameter s in Eq. (11):
S(out). (iayy _ (L=8)* 1
&wﬁbn.ﬂ. .Enm v - M - __,w AMWV

Analogously we find the distance &wgmwwww 559 ) between the two-qubit output of the

quantum copying and the ideal output to be constant, i.e.

Sout). A(id) \ _ 5. _ 2
B2(Pagali Pavar) = 5 = 5- (26)
The idle qubit after the copying is performed is in a state
~(out 17, id) T 1:
e =3 (A0) + 3L, (27)

where the superscript T denotes the transpose. We note that in spite of the fact, that
the distance between this density operator and the ideal output qubit depends on the
initial state of the original qubit, i.e.

u© (7 2 ] 5
a3 ") = 5 (141218 sin’ ), (28)

the output state of the original qubit still contains information about the input state,
though less than either of the copies ag and a;. In order to extract this information we
note that for an hermitian operator A

Tr(p5,") A) = Tr ((55)TAT). (29)

This means that to obtain information about A at the input, we measure AT for the
original qubit at the output.
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4. Conclusion

Suppose we want to build a copy machine which will copy only two input states. If
the states are orthogonal they can be copied without error, while if they are not, the
copies will be imperfect. It is possible to use the fact that a copying transformation
must be unitary to find lower bounds on the copying error in terms of the overlap of
the vectors [10]. These bounds can in turn be used to find a weak lower bound for the
copying error produced by a copier which copies all, and not just two, input states. The
same methods are also able to provide lower bounds for the copying error introduced
by copy machines which produce N, instead of Just two, copies. One finds that as N
Increases so must the error in each copy.

A 1 - N quantum copier which copies all mput states equally well was recently
found by Gisin [13]. The single-copy density matrixes are of the form given in Eq. (11)
and the scaling factor s decreases as N increases. A quantum logic network which
realizes this copier has also been found [15].

The study of quanturn information, its manipulation and transmission, is a relatively
new subject. Quantum copying should be a useful tool in its exploration.
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