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QUANTUM OPTICS AS A CONCEPTUAL TESTING GROUND!
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Entangled states provide the necessary tools for conceptual tests of quantum me-
chanics and other alternative theories. Here our focus is on a test of the time sym-
metric, pre- and postselective quantum mechanics and its relation to the consistent
histories interpretation. First, we show how to produce a nonlocal entangled state,
necessary for the test, where there is precisely one photon hiding in three cavities.
This state can be produced by sending appropriately prepared atoms through the
cavities. Then, we briefly review the proposal for an experimental test of pre- and
postselective quantum mechanics using the three-cavity state. Finally, we show
that the outcome of such an experiment can be discussed from the viewpoint of the
consistent histories interpretation of quantum mechanics and therefore provides
an opportunity to subject quantum cosmological ideas to laboratory tests.

1. Introduction

Two quantum systems are entangled if their state cannot be expressed as a product
of states of the individual systems. This implies that the two systems are correlated. It
also implies that, even though the entire system may be in a pure state, neither of its
subsystems has a wavefunction. In fact, if the degree of entanglement is large enough,
Bell’s inequality can be violated [1]. Consequently, entangled states feature prominently
in investigations of the foundations of quantum mechanics. The concept of entanglement
can easily be generalized to more than two systems. For example, Greenberger, Horne
and Zeilinger proposed a strong test of local hidden variables theories which involves
the use of a highly entangled state (GHZ state) of three systems [2]. Tests of quantum
mechanics itself also require that highly entangled states be used [3 - 5].

Experimental realizations of these tests require that methods of producing entangled
states be found. Previous works have concentrated primarily on producing entangled
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states of atoms. Cirac and Zoller showed how to produce a maximally entangled state
of two two-level atoms [6]. Their method could also generate a GHZ state of three
atoms if the cavity through which the atoms pass is prepared in a superposition of a
three photon state and the vacuum. A method of producing entangled pairs of atoms
using two micromaser cavities was discussed by Bogar and Bergou {7]. Tests of the
nonlocality of quantum mechanics employing two cavities and, subsequently, two atoms
were proposed by Freyberger [8] and Gerry [9]. Sleator and Weinfurter, as a byproduct of
their work on teleportation and quantum logic gates, found how to create an entangled
state of one cavity and an arbitrary number of two-level atoms [10]. A method of
generating particular entangled states of two cavities occured as an intermediate step
in the quantum optical adaptation of teleportation proposed by Davidovich, Zagury,
Brune, Raimond, and Haroche [11].

In the next section we show how a particular entangled state of a photon hiding in
one of three spatially separated cavities can be produced. The method is based on the
techniques of cavity quantum electrodynamics {12]. Further details on the techniques
as well as the generation of more general entangled states can be found in {5} and in
[13). Then we review a proposal to test time symmetric quantum mechanics, originally
suggested by Aharonov, Bergmann, and Lebowitz {14] and its relation to the consistent
histories interpretation of quantum mechanics [15] which has widely been considered as
the only vital alternative to the standard Copenhagen interpretation.

2. Generation of a three-cavity entangled state

In this section we begin by reviewing the available techniques for the manipulation
of single-mode cavity fields and two-level atoms. They include preparation and further
manipulation of an atom via a resonant classical field before and after the cavities,
quite frequently in the Ramsey configuration, and both resonant (Jaynes-Cummings)
and nonresonant (QND type) dispersive interactions of an atom with the quantized
cavity fields. Then, we show- that an appropriate combination of these techniques can
be used to generate the desired three-cavity entangled states.

We shall consider two-level atoms with excited state |e), ground state |g), and energy
separation Eg. First, we describe their interaction with the resonant classical field. If

the atom and the field interact for a time ¢ the evolution of the atomic states is given
by

ley — cosfi(t)]e) +sinby(t)]g),
lg) — —sinbq(t)le) + cosbi(t){g), (1)

where 8 (t) = 1Qt and € is the Rabi frequency. Later, we shall be interested in specific
values of 6, (t). Notice that §;(¢) is half the classical Rabi rotation angle.

When the field is quantized, we have to give both the state of the atom and the
number of photons to completely specify the state of the system. That is, our states
are of the form |e,n} or |g,n) where n is the photon number. The field is assumed to
exist inside a cavity which the atom traverses. For our purposes, we are only interested
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in the cases n =0 and n = 1. For n =0 we have
le,0) — cosfa(t)e,0) +sinba(t)lg, 1),
l9,0) — 1g,0), (2)

where 85(t) = gt (with g being the coupling constant between the atom and the cavity
mode). For n = 1 we are only interested in what happens to an atom injected in its
ground state
lg, 1) — —sin2(t)]e, 0) + cos b2]g, 1). (3)

Here 5(t) is half the vacuum Rabi flipping angle.

Finally, when a two-level atom interacts with a far off-resonant quantized field mode,
it acquires a phase shift as follows [12]. When the photon number is zero the states of
the atom are unaffected. If it is one, we have

le) = e~#®e), and |g) — lg), (4)

where 83(t) = (g2/6)t is the relative phase shift between the two atomic levels (§ is the
detuning on the intermediate transition), induced by the dispersive interaction. That
is, the |g) state is unchanged and the le) state is multiplied by a phase factor.

These are the basic ingredients we need to create the desired entangled three-cavity
state. It is now only necessary to arrange them in the proper sequence and to choose
the proper values of 01, 65, and #3. Our first objective is to establish the appropriate
initial condition for the three-cavity system. We begin with the three cavities in their
vacuum states. An atom in the state |e) is sent through a region before the cavities

where it interacts with a classical field (Ramsey zone) with cos(f1) = pr. putting the

atom in the state i

in) =

iy V3
Then, this atom is sent through the first cavity where it undergoes resonant interaction.
The interaction time has been adjusted so that 6, = 7/2, yielding the atom-cavity state

wer 4 /210)1)10)s[0)lo). (6)

(le) + V2lg)). (5)

The states |0); and |1); are, respectively, the zero and one photon states of cavity
i (j = 1,2,3). This first step is necessary only to establish the appropriate initial
condition, Eq. (6), for the three-cavity system. Alternatively, we could omit this step
from our considerations and take this initial condition as given.

In any case, the state of the first atom factorizes and the atom can be discarded
after establishing the proper intial condition. A second atom in its excited state is sent
into the system. The atom is first sent through the Ramsey zone with #; = w/4 which
prepares it in the state |+) [see Eq. (8) below]. Then, it passes through the first cavity
and a second Ramsey zone afterwards. It interacts off-resonantly in the first cavity and
the interaction time has been chosen so that 63 = 7. After this interaction the state of
the full atom-cavity system is

A

,\MA:XTV +V2(0)114))10)2[0)s, (7)
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where 1
+= — + |e)). 8
%) ,\m:.s le}) (8)
The atom now passes through a second Ramsey zone with ) = —m/4 which has the
effect

[+) — le), and =) = 19), 9)

so that the total atom-cavity state is now

1
—=(|1)119) + V210)1€})[0)2]0)s- (10)
V3
The atom then passes through the second cavity where it interacts resonantly with
6, = m/4. The resulting state of the system is

w:ism_s 4+ 10} [D)alg) + 10)110)2le))10)s- (11)

Finally the atom passes through the third cavity where it interacts resonantly with
g, = w/2. This results in the following final state for the system

Q_\wA_HVH_ovM_ovw +10)1]1)10)3 + [0)110)2[1)3)lg)- (12)

The atom can now be discarded and we are left with the final highly entangled three-
cavity field state

|Ws) = IHWAEH_?_? +10)1]1)210)s + 10)110)21)3)- (13)

This is just the desired three-cavity entangled state that we were set out to generate.

3. A test of pre- and postselective quantum mechanics

Next we describe how a three-cavity entangled state such as the state |¥3) of Eq. (13)
can be used to test the propositions of pre- and post selected quantum mechanics
originally suggested by Aharonov, Bergmann, and Lebowitz (ABL rule) {14]. A more
detailed account is about to appear elsewhere [16]. In order to understand how the ABL
rule is different from conventional quantum mechanics, we first briefly review what is
the quantum mechanical prediction for sequential measurements. At time 7, the system
is prepared in state |a) by measuring an operator A and finding the eigenvalue a (we use
a for both the eigenvalue and to label the corresponding quantum state). Suppose, at
time { > 1;, we measure the nondegenerate operator C on this system. The probability
amplitude of finding the eigenvalue ¢q is (cnla). Then, at timety > ¢, the measurement
of an operator B is carried out. The amplitude of finding the eigenvalue b after finding

OBy i i
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cq in this sequential measurement is @_?Xn:_@v. The probability is simply the absolute

square of this amplitude, \
p(b, cala) = Kblea)(enla)", (14)

where the notation reflects that this, in fact, is a conditional probability which is con-
ditioned on the initial state. In order to facilitate later comparison with the consistent
histories interpretation, we note that this expression can be written as

E?. n:_av = .HH.:UQMU:NUQT:,_“ Awmv

where P is the projection operator onto the eigenstate specified by its label.

This expression is not symmetric under time reversal, as was first observed by ABL.
It makes predictions starting from a fixed initial state (the preselected state in their
terminology) in a definite direction in time such that t; <1 < 2. According to their
reasoning, this apparent lack of time reversal symmetry is due to the measurement
itself. The actual measurement of A has been carried out and all information from
times before t; is lost. ABL therefore defined a pre- and postselected system where
the final measurement of B at iy is carried out and the actual result b is found. A
collection of systems all satisfying the same pre- and postselection condition is the
“pre- and postselected ensemble”. It is natural then to ask what is the probability that
a measurement of C, at time ¢ on this ensemble, will yield ¢,. In general, the answer
will be different from Eq. (14). ABL suggested that the probability is given by the
following expression,

p(b, cnla)

i p(b, cila)”
This simply means that the probability is given by the weight of the particular outcome
relafive to the weight of all possible outcomes, a very natural looking proposition,
indecd. At this point it should be mentioned that this is the simplest form of the
ABL rule, based on the assumption of a discrete and nondegenerate spectrum. Various
generalizations are available but this is sufficient for our purposes. The notation shows
explicitly that this is a conditional probability which is now conditioned on both the
initial and final state. Furthermore, it is explicitly time reversal symmetric: from the
point of view of the initial condition, this is a prediction and from the point of view
of the final condition, this is a retrodiction. For uniqueness, it is sometimes termed a
proposition.

A relatively simple experimental test of Eq. (16) can be carried out in the following
way. Let us assume that the initial state |a) is the one given by |¥3) in Eq. {13) and
the final state |b) differs only in the sign of the last term in the r.hs. in Eq. (13),

p(cnla,b) = (16)

) = J=(1101210)s + 013110003 = 0):10a11))- (17)

Since |a) and {b) are not orthogonal, our pre- and postselected ensemble is not empty.
Suppose now that, at time ¢, we open cavity i, where i = 1 or 2, to see if the photon
is there. If we introduce the notation {1y = |1)1]0)2]0)3 and 12) = [0)1{1)2|0)s then
such a measurement obviously corresponds to a projection on |4} (again i = 1 or 2).
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The other possibility, photon not in cavity 2, corresponds to the projection onto the
orthogonal subspace, 1 — |i){i|. Upon substituting into Eq. (16), it is a simple matter of
algebra to show that the ABL rule yields unit probability for this kind of measurement.
In other words, we will always find the photon in the cavity that we care to open.
Furthermore, it assigns unit probability to mutually exclusive propositions which is a
highly counterintuitive suggestion. This is, however, not the end of it. If, at time t,
we decide to measure the operator A on this pre- and postselected ensemble, i.e., we
choose C = A then Eq. (16) tells us that the value a is found with unit probability again.
Finally, if at time ¢ we decide to measure operator B on this ensemble, i.e., we make
the choice C = B then the ABL rule predicts that the outcome b is found, again with
certainty. Let me summarize the situation that we have encountered so far. At time
t, we can perform at least four different measurements on our pre- and postselected
system, the outcome of each of which can be retrodicted with unit probability. In
addition, the first two of these are mutually exclusive propositions.

Is this a satisfactory situation? Hardly, if we are to assign any element of reality
to the outcome of these intermediate measurements and the states the system is found
in. It appears that quantum mechanics is contextual and “reality” which happens with
certainty depends on the question we ask from the system. A natural assumption would
be that this is so beacuse of the way quantum mechanics constructs probabilities. To
show that this is not quite the case, let us have a look at Eq. (16) from a broader
perspective, viz. from the point of view of the consistent histories interpretation of
quantum mechanics [15]. It was first shown by Griffiths [17] that quantum mechanical
probabilities conform to the rules of classical probability theory if the following condition
is satisfied, ) :

Re[Tr(PsCiPaC;)] = 0 for i # j. (18)

Here Re[...] denotes the real part of [...]. This is the off-diagonal generalization of
Eq. (15). It is easy to check that in our case, when we use ¢ and j as defined after
Eq. (17), this condition is met. One consequence of the above equation is that the
denominator in Eq. (16) can be written in the following way,

Splhedo) = 3 [atedal = | S0l la] =@l 09)

Here, in the first step, we made use of Eq. (18) and, in the second step, of the closure
relation. This means that the denominator in Eq. (16) becomes independent of the
particular decomposition of the unity operator and the probability can be written as

pleala, b) = ummmw_va. (20)

The expression in the denominator is now simply the transition probability for the
|a) = |b) transition and our notation accounts for the fact that it is just the conditional
probability for this transition since the state |a) is normalized to unity. Thus, under
these conditions Eq. (16) reduces to Eq. (20) which has the form of a classical conditional
probahility where the outcome cn is conditioned on two conditions.
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The consistent histories formalism was introduced to deal with a closed quantum
system (possibly the universe in quantum cosmologies). One particular question ad-
dressed by this formalism is whether it is possible to retrodict the past history of a
closed system, including, in particular, its initial state, knowing, e.g., its present quan-
tum state. Based on the retrodictions by Eq. (16) or Eq. {20) this is highly doubtful
since even less cannot be achieved. Knowing both the initial and final state of the sys-
tem mutually exclusive histories can be retrodicted, each with unit probability. A test
of this kind, therefore, would be extremely interesting because, if it confirms the propo-
sition of Eq. (16), it just adds to the mysteries of quantum mechanics. If it contradicts
Eq. (16) then, clearly, the consistent histories interpretation (or its stronger version,
the decoherent histories [18]) need some further rules to select possible scenarios from
among the permitted ones. At this stage, it appears this second path is more likely to
be followed and further constraints are to be found in the future.

4. Conclusion

Highly entangled states are useful in testing local hidden variables theories, quan-
tum mechanics itself, and the pre- and postselective quantum mechanics of Aharonov,
Bergmann, and Lebowitz. They also feature prominently in certain schemes to transmit
quantum information, such as teleportation [19] and quantum cryptography [20]. One,
therefore, wants to have a method of producing them.

As we have shown cavity QED gives us the necessary tools to do this. It is possible
to produce maximally entangled states of multiple cavities. It should be possible to use
these states to process and transmit quantum information.

With regard to experimental feasibility it should be noted that, in the experiments
of Brune et al [21, 22] using circular Rydberg states, both large Rabi rotation angles
and, in the off-resonant case, large phase shifts have been achieved. Since the lifetime
of the circular Rydberg atoms is much longer (30 ms) than the transit time through
the apparatus, it does not pose a serious limitation on the suggested scheme.
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