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The classical and quantum mechanical description of three-wave interaction are
summarized and compared. There is a far-reaching equivalence but characteristic
differences exist. Exact quantum mechanical results via numerical solutions were
already found for medium initial photon numbers. The calculation of the Wigner
function with the help of classical trajectories offers a very good approximation
for the quantum mechanical description in region of arbitrarily large mean pho-
ton numbers. In addition, the trajectories help us to understand the processes
physically.

Parametric interaction between intense light beams is the most important process
for the generation of squeezed states [1] and is by now classically well understood {2,3].
Its optical history began with the observation of the second harmonic of a laser [4]
and was shortly after this followed by exact solutions for the classical coupled-mode
equations of three- and four-wave interactions [5]. Although these solutions describe
most of the experiments they do not allow immediately to extract the behavior of the
single phases [6]. The normally much more important phase difference can be inferred
from the conserved quantity I' {5].

To be more definite let us confine ourselves to x{*) media and consider only three-
wave interaction including the degenerate case of second-harmonic generation (SHG).
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The application to other nonlinearities is discussed in [7]. For exact resonance we have
w3 = w1 + wy, where w3 is the frequency of the pump and w; and w, correspond to
signal and idler, respectively. We assume throughout this paper phase matching of the
wave vectors. The above mentioned T' takes then the form (5]

I' = w1 (Q)uz()us(¢) cos 4(¢), 1)

where u;((), (¢ = 1,2, 3) are the real classical amplitudes and § = ¢3 — @2 — ) their
phase difference.

The corresponding quantum problem of three-wave interaction is described by the
Hamiltonian (in the interaction picture)

Hine = hr(abét +atble), (2)

where @,b and é are the annihilation operators of signal, idler and pump, respectively,
and « is the coupling constant containing x?). The classical constant T corresponds to
the expectation value of the Hamiltonian (2) for coherent states.

To complete the classical picture we consider the squared pump amplitude u3(¢) as
given by [5]

QWAA.V = :wn + TsW@ - anv mﬂm:.zwn - :w:vu\wﬁﬁ + ﬁcvg qﬁuq va

where sn[z, m] is the Jacobian elliptic function [8] and the parameter m is given by

m= .:ww _ :w: TC
B §Wa - :wn ’
The constants :wa > :wv > :..wn are the roots of the equation
u3[uf(0) + u3(0) — u)[u(0) + u3(0) — ul] — T2 = 0. (8)

The coordinate ¢ = xt is proportional to the interaction length and contains the coupling
constant « from (2). The solution (3) depends only via I' on the phase difference. The
intensities of signal and idler can then be written as w2(¢) = u?(0) + u3(0) — w2(¢),

i = 1,2. Finally, the single phases behave according to [2,9]

¢r
! w
ﬁ_Aﬁ'v = A\.AOV |,\ov %&ﬁ TS H;Muw“ Amv
where I' # 0 secures that also u?(¢) cannot become zero.
We mention that this classical picture is greatly simplified in the parametric appro-
ximation where the pump is very strong and does not feel any depletion. Then we can
express the complex signal and idler amplitudes by

a(¢) = acosh(uz(0)¢) — ie i3 sinh(u3(0)¢)
B(C) = Beosh(uz(0)C) — ie~2a* sinh(u3(0)¢). (7)

Quantum and classical description of three-wave interaction 181

In (7) () is the initial complex amplitude of the signal (idler) wave and the phase
motions are automatically included. If, for instance, all modes start real then they
become immediately complex and show so phase changes. Hra no-energy exchange
regime [2,6] is impossible and we emphasize that the exact classical solution for a strong
pump shows that almost all pump energy can be ﬁ.w.ummm:& _Zowtooﬂ.z.m .Om .aro E.Frw_
phase difference. This is very different from a situation where all three initial intensities
are comparable. . ‘ .

The exact quantum mechanical solutions can only be obtained :Edwn_nm:% e.g., via
diagonalization in the number-state basis [10]. Such ncmsgﬂ :.Eorwz_nmw nEoEwSo:m
(with all modes excited initially, as, e.g., in [6]) are naturally limited to relatively small
average photon numbers but include all saturation phenomena s_:mr correspond to
the classical nonlinearities describing depletion. The question arises if we can use the
various classical motions to get a deeper understanding of the quantum motion and
simultaneously extend the quantum calculations to arbitrary high photon E.Eagwm. It
turns out that by using ensembles of classical trajectories that fit to the initial <<_m.=9.
distributions W we can describe quantum mechanically almost all nonlinear optical
effects for a time region that extends at least up to the first depletion of one mode.
Note that within this time region the most important quantum effects as squeezing and
sub-Poissonian statistics reach their {first) maximum. The limits show up as mmmsmmowzﬁ
negativities in the exact W [7]. On the other hand this method includes negative W
functions from the beginning.

Therefore we make the following ansatz for the Wigner function of all three modes

S\ADf m“ Y5 uv ~ «\w\AQonAQu mu Y ﬁv_ mcnﬁQg \w, s MV. QOGAQ. m‘ s &v“ Ov“ Amv

where p(1) = {agc, Boc, Yo} is a classical trajectory EEA& at time t ~.mmor.mm the vw.mma-
space point {a, #,v}. The classical trajectories, i.e., mo~:ﬁ~o¢m of the classical equations
of motion, are inserted on r.h.s. in the initial W distribution of the wcommm. In &&.@w
words, the quantum dynamics in phase space [given by Eq.(8)] is simulated &:&:5
the classical phase space starting with an ensemble of phase-space points womo&_sm to
the initial Wigner distributions. Monte Carlo methods of importance sampling can be
applied to calculate quantities of interest.

The accuracy of such an approach can be estimated. When we look at the exact equa-
tion for W we see that it has no second-order derivatives but there are third-order deriva-
tives which will be neglected by our method using classical trajectories. On the other
hand, by assuming coherent states initially in all modes, i.e., {#{0}) = _chn_mﬁe_.«o.v?
we can expand the Wigner function up to second order in (xt) and compare this with
corresponding expansions inserting classical trajectories. These calculations show that
the error can be surprisingly small if we consider only one mode and average over the
others. For example, the exact Wigner function of the signal is given up to second order
in (xt) by

Wala,t) = e~ 2o—aol? [1 — {ixt2(a” — af)Bsvs + c.c.}
+(1)? ({=2(a” — a5)*B5% 78 + c.c.} + 2o — aal* 2160yl + |Bol* + 170]*)
+(I70l” = 1B {efa® — af) + c.e.} = 2byo*([40f* + 1)) +O((x1))] . (9)
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If we use a short-time expansion for the classical amplitudes and insert them as trajec-
tories into the Gaussians of the initial W we find also (9) except that in second order
the term |a — «g|? — 1/2 has to be added.

For a variety of initial conditions numerical simulations were compared with exact
quantum results for medium initial photon numbers. The tendency that the agreement
improves with increasing initial photon numbers was demonstrated for different exam-
ples in [7]. So we could go over to very large photon numbers and derive scaling laws
7.

Here, we concentrate on the initial state

_‘.\\onv = _Qc = mva_ovL.xo = wovo :ov

which describes for ¥ — co and relative small a the linear phase-insensitive parametric
amplifier. Such an amplifier is completely equivalent to a linear laser amplifier where all
active atoms start in the excited level [11]. The new point here is that we consider also
the nonlinear behaviour of the signal amplification in (10) up to the almost complete
exhaustion of the pump and try to understand all this with the help of characteristic
classical trajectories.

Eq. (5) has three real roots because for I' = 0 [cos6(0) = 0 or one u;(0) = 0] the
roots are

wa=0, uhp=ui(0)+5(0), wd=u(0)+u5(0) (u3(0)>u}(0). (11)

Furthermore, for the largest I? = u3(0)u3(0)u(0) one root is given exactly by 42(0)
and the other two are found from a quadratic equation with real roots. All other cases
are in between what makes the above statement about the roots plausible. These three
roots determine the "range of power variation” [5].

For the initial state (10) and allowing a spectrum of classical initial amplitudes
according to Wigner functions for these coherent states, the parameter m given in (4)
turns out to almost constant and very close to 1. We note that u3, determines in (3)
the smallest pump amplitude. Small values of T are typical for all pump amplitudes
lying within the initial distributions of the Wigner function and imply also u}, close to
zero [see Eq.(11)]. Therefore it comes to a constriction of the pump Wigner function
when the (quantum mechanical) pump amplitude passes zero. This is shown in Fig. 1.

In addition the distribution is strongly stretched what can also be understood by
inspecting (3): For m — 1 the elliptic sn function can be approximated by the hyperbolic
tangent. The constant {y has to be chosen in such a way that the argument becomes
zero when the pump reaches its minimum. Near to this zero the function tanh varies
most strongly. Therefore the relatively weak variation of ¢ due to different initial values
in signal and idler has a large effect on the pump amplitudes when the last are already
relatively small.

When the pump starts being depleted the single values of u3(¢) are very strong.
Consequently their phases are almost constant according to (6) and so the pump points
move radially. This leads to pump phase squeezing what is also clear from Fig. 1.
Simultaneously the amplitude and photon number fluctuations increase.

Quantum and classical description of three-wave interaction 183

pump
10F _ _ _ _ ]
- 3.68 249
y of .
1055 0 20 40 60 80
X

Fig. 1. Density sampling of the simulated Wigner function of the pump wave at times v¢ = 0, 2,
and 3.68 when the amplitude (y|é|y) passes zero.
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Fig. 2. Simulated Wigner function of the signal and idler wave at same times as in Fig. 1. At
the time v¢ = 2 the signal looks still as linearly amplified [see Eq.(7)] although Fig. 1 shows
already a clear deformation of the pump.

The change of the Wigner function for signal and idler is moﬁwnmaa in Fig. 2. .Hi-
tially the pump is almost constant while the signal and especially the idler phases adjust
quickly to optimum phase values so that the energy transfer Umno.Emm maximum (com-
pare [2]). This leads to an enlargement of the signal phase c:noggzm%.émz.waoin from
linear amplification {11,12]. The signal cloud blows up but moves m_Bc:mbmo:mG. to
greater amplitude values as shown in Fig. 2. This behaviour is understandable by using
the solutions (7). For an arbitrary pair of initial values for signal and idler these mo.:T
tions have an exponentially growing part and one which is damped out. The growing
part shows that the asymptotic angle of each signal point with the UOmem n.mm_ axis is
equal to the angle that the corresponding idler constitutes with the negative imaginary
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axis. Therefore, the broadening of the phase in both waves is equal. In the saturation
regime these angles cannot change due to {6). Concerning the amplifier it is well-known
that the quantum phase distribution of a greatly amplified signal becomes stationary
[11]. This can here traced back to single trajectories.

When the pump cloud crosses zero, signal and idler come into complete saturation
and show a crescent-like distribution of almost constant amplitudes and a phase dis-
tribution that corresponds to the broadened one of the initial signal. But there is no
phase saturation. These results can be compared with the description of a saturated
laser amplifier [13,14]. The saturated laser amplifier leads to amplitude stabilization
but does not limit the phase diffusion.

Note that there is a remaining pump photon number that cannot be depleted. For
an initial signal (a = 2) approximately 10% of the initial pump photon number stay
there. Calculations with greater pump amplitudes (y = 40, 160, 640) and the same
signal give similar results. This fraction is reduced with increase of the coherent signal
input and goes to zero when all three waves have comparable strengths and a phase
difference 6(0) = /2.
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