i
¢
|
¢

acta physica slovaca vol. 47 No. 2, 157 — 164 April 1997

KILLING METRICS IN TWO DIMENSIONS
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In two examples of the 10 orthogonal coordinate systems in 141 - dimensional flat
spacetime allowing for a separation of the Klein-Gordon equation the associated
symmetric Killing tensor fields of order 2 are considered as new metrics replacing
the original flat ones. In the arising curved spaces the horizons of the separable
coordinate domains become horizons of true curvature singularities; in simple cases
a physical interpretation in the framework of 2-dimensional gravity is possible.

1. Introduction

Separable orthogonal coordinate systems on n-dimensional manifolds are characterized
by Stackel systems, that is by linear spaces spanned by » independent symmetric Killing
tensors of order 2, including the metric tensor [1]. Killing tensors are characterized by
the vanishing of their symmetrized first covariant derivatives,

ki = 0; (1)

the contravariant Killing tensors of a Stickel system (in two dimensions: ¢** and some
other tensor k**) commute with each other in the sense of the Nijenhuis-Schouten
bracket {1] N N B

[k, g)7* = k" g"* — g} k" =0 2

and they are closely related with the horizons of separating coordinate systems in flat
space [2].

In flat 141 - dimensional space-time, though every Killing tensor may be constructed
as a tensor product of Killing vectors, only 2 of 10 separable coordinate systems are
associated directly with Killing vectors — the Cartesian and the Rindler system. An
important physical significance of Killing vectors is the fact that according to these two
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ordinate systems quantum field theory (QFT) may be established by a positive- and
gative-frequency mode decomposition with respect to the one or the other Killing
me coordinate [3]. ,

For these reasons it is worthwhile to perform an investigation whether field quan-
zations based on mode decompositions may be generalized to arbitrary separable co-
dinates and whether Killing tensors may be an aid for the construction of quantum
ates. Although this work was initially motivated by QFT, geometrical issues of Killing
nsors deserve enough attention to do first some purely classical calculations, which
ere inspired to a large extent by the Horsky-Mitskievich generating conjecture [4] con-
rning Killing vector fields. Considering the symmetry between g and k in (2) it is
mpting to interchange their roles so that the latter one provides a contravariant metric
1 the curved manifold M» {and ¢** is an ordinary Killing tensor). The immediately
ising question for the geometrical properties and a possible physical interpretation of
e objects (M, k) is the contents of this paper.

Separable coordinate vectors being the common eigenvectors of the metric and an-
her Killing tensor, it is clear that both are diagonal in such coordinate bases. If
e contravariant metric components are denoted by ¢'*, other Killing tensors may be
ritten as - )

k= p; g%, i=0,1 {3)
vithout summation). The p; are functions of the coordinates, which may be obtained
- solutions of the following set of linear partial differential equations [5]:

8 pj = (pi — pj) Bi In|g¥]. (4)

the following section the Killing tensors associated with two curvilinear orthogonal
parating coordinate systems in 2-dimensional Minkowski space are calculated, in sec-
on 3 they are considered as metric tensors on the domains of separable coordinates,
hich are bounded by null horizons in Ry, and the resulting curvature scalars are
ven. In section 4 Mj is extended by passing to the cartesian coordinates ¢ and z of
e original flat space and the null vector fields of the Killing metrics are determined.
>ace-time interpretations are given. .

2. Separating coordinate systems and Killing tensors

In 141 - dimensional Minkowski space there are one elliptic, six hyperbolic, and two
rabolic systems [6]. With the exception of one hyperbolic system their domains are
en subsets of Ry bounded by horizons.

1. The elliptic and one of the hyperbolic systems may be treated together, they are
alytic continuations of each other. Curvilinear coordinates g and v are defined by

?=py, 2=(u-1)r-1) (5)

th 0 < v < g < 1in the elliptic, and ~co < v < p < 0orl < v < g < ooin the
perbolic system. Coordinate lines, which are ellipses or hyperbolas, according to the

nge of y and v, are given by
t? z?

i HIEH_ ()
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and the same equation in v. The elliptic system is defined in a square, the hyperbolic
one in four space-time wedges attached to the corners of the elliptic coordinate domain
(see fig. 1). The two systems have the common horizons t +z =1 and t £ = —1.

Now Killing tensors associated with this system are constructed according to (4)
from the flat metric in elliptic (hyperbolic) coordinates:

Itlt atw I n_tw
ot =t (o ) o

The general solution of (4) is given by (z° = p, z! = v)

p)=avt+e, p(p)=opte | (8)

with @ and ¢ being constants. When a = 0, ¢ = 1 the original flat metric is retained.
For considering Killing tensors different from it o may be set equal to 1 without loss of
generality, so that & is of the form (particular Killing tensor)—c -(flat metric) throughout
this paper. (The minus sign is chosen for later convenience.) The Killing tensor thus
constructed from (7) is

o= (R e ) ®)
2. The Rindler system is conventionally denoted by  and 7,
t = rsinh T, x = rcoshr; 0<r<oo, —o0<T<o00, (10)
with coordinate curves (timelike hyperbolas and spacelike straight lines) given by
22— 1% = r?, t/x = tanhT, (11)
the metric
ds? = r2dr? —dr?, (12)

and the associated Killing tensor

ik _ H.Iwmm 0
o (195 0), o9

3. Killing tensors as metrics, curvature singularities.

¢From the two tensor fields g** and k** commuting in the sense of (2) metrics can be
generated in different ways. First, by inversion of g** the covariant flat metric g;; with
a Killing tensor ki := .Su..qiki is obtained, or, by inversion of £** the covariant metric
hie with a Killing tensor fi := ::.55&. Then, in a second step, also k;; and fir may
be taken as metrics. In the following h and k& will be investigated.

1. In the elliptic and the first hyperbolic system the Killing metrics £ and h are

v s j 0 H—v l_L{ 0
ki = “ p u o and  hy = u(l=p)(c—v} )
4 T r(=y) 9 0 v(l—w){c—u)

(14)
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sth of them provide curved manifolds covered by g and v. Their determinants change
m at g = cor v = c. If0 < c< I this occurs in the elliptic system, otherwise
the hyperbolic one. In the elliptic case the parameter value ¢ denotes one certain
ipse among the coordinate curves with both p and v greater or less than ¢ outside
d v < ¢ < pinside. So the exterior has a Lorentzian metric, whereas the interior has
positive definite one. For ¢ < 0 or ¢ > 1 the change of signature occurs on one of the
ordinate hyperbolas, which divides analogously the manifold into a concave subset
th a Lorentzian metric and a convex one with a definite metric.

An important physical quantity of the obtained curved manifolds with indefinite
etrics is the scalar curvature, which for ki is given by

Qv — 2e(p+v)+ 3¢t —¢
(= o =P
becomes singular exactly at the same parameter value ¢ where the metric changes its
snature, in the hyperbolic cases it vanishes asymptotically for large us and vs. The

rvature R{h] is a little more complicated but has the same singularity structure.
2. The Killing metrics associated with the Rindler coordinate system, which are
ngular for ¢ = 0, are the following:

R[k] =2 (15)

4 .2 r?
kie={ " oe, m and  hg = Loé w (16)

c

or ¢ > 0 there is a domain with a Lorentzian metric between the singular hyperbola
= +/c and the horizons given by the asymptotes ¢ = *z, and one with a definite
etric on the other side of the singularity. The curvature is given by
2r? — 3¢ 6 c?
Rlk] =2 ——— Rh = ——— (17

c(r2—c)?’ (r? —c)?’
4. Extensions, null geodesics

he parts of the domains of separable coordinates, where the curved Killing metric
Lorentzian, are regular at the coordinate horizons. For an investigation of possible
tensions of these manifolds a transformation from separable coordinates back to ¢
1d z according to (5) and (10) is suitable. Doing so an interesting observation can be
ade: The null geodesics with respect to the Killing metrics k;x become straight lines,
amely the tangents to the singularities; on the coordinate horizons they coincide with
e lightlike directions of the flat metric [2].

In the elliptic and the associated hyperbolic systems now the expressions for the
illing metric & and the corresponding curvature are given by

ko — 1—-22—¢ (x T
ik = Lz [\ul_vﬁ A uv

2(1 — ) + 2ca? — 3e() —¢)
ﬁ: — «.:u 4+ el — R.A_ — miu

R[k] = 2
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Fig. 1: Singularity, horizons and null geodesics for hix in the elliptic-hyperbolic case. The
domains of elliptic and hyperbolic coordinates are denoted by E and H, respectively.

R is a function only of the determinant of k, the square of which is the denominator,
this fact indicates a symmetry. Indeed, by a further transformation of variables,

2
NM 2 a4
LI WU FRRGRIRUPE, | (.S (20)
c 1-c¢c c(l—c¢) t
the metric is transformed to the explicit Friedmann-Robertson-Walker form
2
, 2 Aﬂ ++/e(l - ovv
ds* =dr? - Aq.+ el — nvv S 7 1| dx (21)
c(l—¢)
The expression for the metric h in ¢t and z is
M1 42 2 1=t e—1° tr
hie = =[(1 =) t* +cz® —c(1—¢)] e l—c—z? ) (22)

its null vectors are given by

:TEH A“anwzalm:w._;aamlmtlnr%Imv. (23)

Here the coincidence with the null geodesics of flat space on the horizons is even more
distinguished: the integral curves of n' are straight lines only on the horizons. At
z = [ + 1, for example, iy = (t2 — ¢)(1,1). This met

=

ic is less symmetric than kg, it

does not admit Killing vector fields, as the integrability conditions [7] are not fulfi
;.v

Is a non-tri

so the Killing tensor [, (respectively g J one in the sense that it is not

a tensor product of Killing vectors.
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Fig. 2: Causally consistent
portion of M in rectangu-
lar light coordinates.

For a space-time interpretation the simpler case ¢ = 0 is considered, where the null
tors become

n' = (z+1,1). ‘ (24)

e integral curves are hyperbolas and the curvature singularity lies along ¢ = 0 (fig.
¢ = 0 denotes the intermediate case between singular ellipses in the square between

- —1 and z = 1 and singular hyperbolas in the right and the left wedge.

By a transformation to light coordinates u and v causal relations may be made
nsparent. For

“ll/\A:Ievmlwz\mA:+ev+w u-—v
B 2 L PR (29)

ds? — 4dudv
(u=v)2 ~2v/2u +v) +2
unshaded domain in fig. 1 is mapped to the corresponding one in fig. 2, which shows
wwmoumzov m:ro:mv geodesically incomplete space. Analytic continuation across the
z0n maps the entire lower half-plane of fig. 1 and yields a timelike continuation of
singularity.
TIransformation of the Rindler-related coordinates to ¢ and z resuits in

(26)

z?—¢ —ix

ki = 4 27
ik —tx t"4c¢ ) (27)
1 its null geodesics are the tangents to the singularity, coinciding on the horizon
) the null lines of flat space.
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For the other Killing metric,

1 t2—¢ —tz
» —_ 9 .Np
\:T%éfﬁvﬁ At e

the null vector fields are given by

n' = Aam +oc, tzkVe(z? -t + avv : (29)

Only on the horizon one of the integral curves is a straight line, the horizon is again
generated by the common null geodesics of the two Killing metrics and the flat one.
The qualitative features of hy, and ki are analogous.

Concerning the singularities, for a positive ¢ R (17) is regular everywhere in the
domain of the coordinates r and 7, where 7 is timelike and the Killing metrics are static.
Clearly staticity is inherited from the time symumetry of the Rindler coordinates. In the
extended manifold the singularity appears at t2 — 22 = ¢, where the determinants of k;;,
and h;, vanish. This is a spacelike hyperbola, the situation is analogous to the Kruskal
extension of the Schwarzschild metric - with the difference that these two-dimensional
versions cannot be vacuum solutions.

For a negative ¢ the singularity z? — t? = —c is timelike, but still has a horizon at
t = 4z. If two copies of the manifolds covered by r and 7, bounded by the horizon and
the singular hyperbola, are glued together at the singularity and extended smoothly
beyond the horizon, a manifold with a singularity and two horizons is obtained. This
is exactly a “two-dimensional black hole solution” with an extended source which is
described in [8]. The source strength is conserved in virtue of the static nature of the
metric.

5. Summary

For the remaining six curvilinear separable coordinate systems the spacetime models
generated by Killing metrics are qualitatively the same: Depending on the value of ¢
one obtains always either regular curved manifolds or manifolds bounded by curvature
singularities along a certain coordinate line.

For the Killing metrics ki, and h;; considered in this paper the curvature singular-
ities have horizons coinciding with the horizons of the domain of separable coordinates
in flat space. In every case these horizons are the only common null geodesics of gix
and both the Killing metrics. The k;xs have two additional properties: They allow for
a Killing vector, and written in Minkowski-like coordinates, the null geodesics appear
as straight lines. The hys have non-trivial {except the Rindler case) Killing tensors of
order 2.

Concerning quantum theory one may consider the classical constants of motion
K := k*p;py in the extended phase space, the cotangent bundle of Mo, constructed
from the Killing tensors with cotangent vectors to the spacetime manifold. Written sym-
metrically in configuration and momentum variables, for which canonical commutation
relations are imposed (in extended phase space also i and the energy I are conjugate
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variables), in every case of separable coordinates the quantum versions of I commute
with the geodesic hamiltonian, ¢** p;ps. So common eigenstates might be suitable pre-
quantum states in a geometric quantization procedure associated with the spacetime
domains of separable coordinates and comoving observers. Such a quantization could
be attempted parallely and in interaction with one based on mode decompositions in
the flat and curved spacetime domains described in this article.
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