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The work gives a brief overview of the topic of cosmic microwave background ra-
diation anisotropies. Then it deals with the so-called Rees-Sciama effect; i.e. with
the anisotropies arising between the last scattering surface and us due to trans-
parent huge irregularities. Using the formulas of Special Theory of Relativity it is
proven that in the neighbourhood of expanding spherical body the Mészdros’ cal-
culations (Mészdros 1994) are correct; the inaccuracy is maximally of order 10712,
Then the profile of the blueshift of expansion caused by an expanding sphere is
calculated for the case, when the radius of this sphere is much smaller than the
relevant Hubble radius. Hence the profiles of the shifts of light periods through a
void and through a supercluster are given in the most general cases. These cases
contain all the three Friedmannian models and both the synchronous and asyn-
chronous clusters. Then the obtained profiles are explicitly decomposed into the
sum of the multipole terms, and it is shown that the observed difference between
the measured direction of the maximum of dipole anisotropy of CMBR and the
result of Lauer and Postman (1994) is not explainable by the Rees-Sciama effect.
This means that no alternative exists to the two possibilities for the explanation
of the data of Lauer and Postman; either the either the huge system of Abell clus-
ters is streaming, or the Friedmannian model is querried. The third possibility
is, of course, that the data of observations of Lauer and Postman are incorrect.
However, any of these three possibilities seem to be strange enough; hence, the
problems coming from data of Laurer and Postman further holds. This is the key
result of paper. As a further technical result it is also shown that in principle
there is no upper limit of Rees-Sciama effect.

1. Introduction

This work deals with the anisotropies of cosmic microwave background radiation
(hereafter CMBR). This problem is exciting, because CMBR is the remnant radiation
from the early stages of Universe, and hence informations concerning the history of
Universe may be obtainable from these studies.
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The paper has a theoretical character. It is mainly based on the measurement of
nisotropy of CMBR done by COBE satellite (Smoot et al. 1992}, and the measurement
f Lauer and Postman (1994). In fact, it tries to give unusual explanations of these
bservational data.

The article consists from two main parts. Section 2 describes the theoretical and
he observational background of calculations, and it contains no new results. Section 3
liscusses a new possible explanation of given observational facts; it contains new results.
some of these results were already published (Mészaros and Molndr 1996); nevertheless,
or the sake of completeness and also for the readers convenience, some parts of this
rticle are again repeated.

In the whole work the signature of metrics (+,—,—,—) is used. The most used
juantities are: ¢ is the velocity of light, G is the gravitational constant, H is the
Tubble-parameter {which depends on time), h = H/(100km sec™!Mpc~1), z is the
edshift, Q = p/p. is the ratio of density p to the critical density p., x is the comoving
listance (dimensionless), i is the conformal time (also dimensionless), k is - if it is not
therwise stated - the scalar curvature of space (k = 0,—1,+1), a(y) is the expansion
unction, which is given by the solution of Friedmann equations in cosmology, ay =
4/(3¢?))mGpa® (p is the density) is a constant having the dimension of length.

2. Survey of facts

2.1. The history of CMBR

The way of the discovery of CMBR is exciting and instructive, and therefore it is
oriefly recapitulated here.

The first ones, who were thinking about the existence of an observable remnant
rom the early stages of expansion of the Universe were Lemaitre (1931) and Tolman
1934). The search for the origin of the chemical elements caused people to consider the
ossibility that matter passed through a phase dense and hot enough to have promoted
wclear reactions that could have built up the elements. These reactions are very natural
n the stars but they were existed through the early dense epochs of the Universe,
oo. Chandrasekhar and Henrich (1942) gave an explanation. They had a conclusion
hat if matter had relaxed into the thermal equilibrium at a density ~ 107gem=3 and
emperature 109K, and if the abundances had been frozen in at that point because of
he rapid expansion and cooling of- the Universe, then the relative abundances of the
ghter elements would agree reasonably well with cosmic abundances. But this theory
1d not work for the abundances of the heavier elements.

Gamow (1942, 1946) had an idea that the thermal equilibrium model is not so good,
ecause the high mass density in the early Universe causes a rapid rate of expansion.
Je argued that an analysis of the element abundances that would have been lefi over
-om the carly Universe, really involves a dynamic rather than equilibrium ca

1on,
king account of reaction rates in rapi g and cooling material. Alpher,
ethe and Gamow (1948) and Alpher and Herman (1948) corrected some Ow's
iacenracy and they hiave shown that the present temperature of the Unjverse e o
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be around 5 degrees over the absolute zero. This remnaut energy, which left over from
the Big Bang, now looks like a weak background blackbody radiation which is coming to
us almost with the same intensity from all directions; this radiation should be isotropic.
Unfortunately, these ideas were forgotten for ten years. Even earlier, Mc Kellar (1941)
studied the excitation of the diatomic molecule CN in the diffuse molecular clouds,
and obtained the conclusion that if the rotational excitation of the CN molecules were
in statistical equilibrium with the background radiation field at the resonance for the
transition between ground and first rotationally excited states, then the parameter T'
{from Boltzmann equation) would be the effective background radiation temperature.
Mc Kellar found the temperature 7' = 2.3K.

After World War II the level of the radioastronomy reached the same level like the
optical astronomy. In the early 1960s many of them had an idea that hydrogen formed
before the star formation and perhaps originated in the hot Big Bang (Osterbock and
Rogerson 1961; O’Dell, Peimbert and Kinman 1964). Already in 1946 Dicke constructed
a radiotelescope and measured a microwave radiation from galaxies and obtained the
conclusion that the temperature of this radiation have to be lower than 20K (Dicke
et al. 1946). In sixties, when Dicke (1968) restored the idea of cosmic background
radiation, Roll and Wilkinson (1966) began to built a modern Dicke radiometer for the
identification of this radiation. In that time Peebles wrote a report about that thing
which the experimentators need to find {Peebles 1965). The CMBR - if really left over
from the Big Bang - have to be a blackbody radiation. Its temperature depends only on
the whole energy of Big Bang and Peebles hoped that this radiation is enough strong
now, too, and observable in the microwave part of spectrum.

The discovery of CMBR was done by Penzias and Wilson (1965) in Bell Laboratories
in Holmdel (state New Jersey, USA).

2.2. The theory of Sachs-Wolfe effect

Shortly after the discovery of CMBR. it was noted that the measurements of anisot-
ropies of CMBR. would have an essential importance for the theories of galaxy formation
{Sachs and Wolfe 1967). After the publication of this paper a great effort was done hoth
to develope the theory of these anisotropies and to measure these anisctropy terms.

In this part we shortly repeat the standard theory of the anisotropies of CMBR
based on 1deas of Sachs and Wolfe (1967).

Sachs and Wolfe (1967) mean that this effect consists from four parts. They are:
A. Two Dopplerian parts; B. Impact on the present temperature of CMBR caused by
the primordial density fluctuations at z = 1000; C. Additional shifts of the present
temperature of CMBR due to the gravitational potential caused by the fluctuations
existing between z = 1000 and z = 0.

A. The two Dopplerian parts.
The first two kinds of anisotropies are connected with the Daoppler effect. and the

Lorentz transformation. In the Friedmann-Robertson-Walker (hereafter FRW) model

e frame called “preferred ne

verse CABR can appear to be isotropic onl
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Peebles 1993). If an observer is moving relatively to this frame, he measures hotter
diation in the direction of motion because of Dopplerian shift. This means that CMBR
ts as an aether, giving a local definition for preferred frame. It is consistent with the
lativity, because the motion of an observer was defined relatively to the homogeneous
a of radiation. The observers motion should be caused by the departures from FRW
etric around the observer.

From the Special Theory of Relativity we know that an observer moving with the
locity v relatively to the preferred frame - in which CMBR is isotropic - sees that the
rermodynamic temperature T of the radiation is a function of direction. To the first
der of (v/c¢) there is a dipole anisotropy, i.e. the temperature T is given by

ﬂ67l50+m8i¢. (2.2.1)

here © is the angle between the line of sight and the direction of motion; T is the
mperature of blackbody radiation in the preferred frame.

Hence, for the eventually observed dipole anisotropy of CMBR given by equ.(2.2.1)
1ere exists a standard interpretation. It assumes that this is the result of peculiar
iotion of Sun caused by the gravitational field of the irregularities in the mass distri-
ution in the neighbourhood of Sun. If this is the case then the direction © = 0 must
e identical to the direction of the peculiar motion of Sun in Galaxy, Local Group and
1 higher structures of galaxies determined independently on CMBR by the detailed
bservational studies of the spatial distribution of galaxies.

The second Dopplerian shift is similar to this one, and reflects the motion of matter
, z = 1000. In Sachs and Wolfe (1967) it is shown that this term is unimportant, and
so here it will not be considered later.

Note still that these two terms are usually not considered to be the Sachs-Wolfe
Tect, although in the paper of Sachs and Wolfe (1967) these terms are clearly men-
oned.

B. Relationship between present temperature of CMBR. and the
primordial density fluctuations at z = 1000.

When cosmologists are speaking about the Sachs-Wolfe effect, many times they
nsider only this part as the ”Sachs-Wolfe effect”. We briefly explain this phenomena.

Be given an overdensity at z = 1000. The density p is the Friedmannian one at
= 1000. Be given two light beams with blackbody spectrum coming to the Earth
- = 0) from the overdensity (beam (1)) and from an arbitrary other point at distance
- = 1000) (beam (2)), respectively (see Fig.1.). The relevant temperatures of light
cams at the instant, when they arrive to the Earth, will be T and (T'+J7T'), respectively.
he relationship between the density fluctuation dp of the matter and the temperature
actuation §7 of CMBR is given by (see, e.g., Weinberg 1972; Molndr 1991; Borner
)93)

ép T

=3

(2.2.2)
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Fig.1l. llustration ol tlic Sachs-Wolfe effect. Lhe deusity p is Friedmanuian at -z = 1000,
except for the overdense region with a density (p + dp). Two blackbody radiations coming
to the Earth (z = 0) from the overdensity (beam(1)) and from an arbitrary another point
at redshift z = 1000 (beam(2)), respectively, will have different temperatures. The relevant
temperatures of light beams at the instant, when they arrive to the Earth, will be T and
(T + &T), respectively.

The terms of higher order than linear were neglected. Equ.(2.2.2) is the sought rela-
tionship between the density fluctuations and the temperature of CMBR. Many tunes
only this effect is called as Sachs-Wolfe one, and in what follows in fact we will do this,
too.

C. Additional shifts due to the non-linearities between z = 1000 and z =

Although this effect was also considered by Sachs and Wolfe (1967), it is usual to call
it as the Rees-Sciama effect. We also will do this, and in what follows the whole paper

deals with this phenomena. Therefore, this question needs a more detailed discussion

which is done in the following subsection.

2.3. The theory of Rees-Sciama effect
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Rees and Sciama (1968) analysed in detail the changes of the period of light going
hrough the large-scale structures existing between z = 1000 and z = 0. The calcula-
ons were quite different than the earlier ones done by Sachs and Wolfe (1967). This
fTect is one of the basic pillar of this work.

The key idea is the following. Be given two points A and B in FRW metric, and
he photons move from A to B. This means that between B and A there will be a
tandard FRW redshift. Then the basic idea is based on the fact that the Friedmannian
edshift between A and B can be generalized as the product of the following three shifts:
Yopplerian (hereafter Dopp) shift, gravitational (or Schwarzschildian - hereafter Sch)
hift and the third term is some special blueshift (hereafter blue), which is called ”the
lueshift of expansion”. The formal mathematical expression of this fact is

Ts _Ts
Ty TRV T 1,

wbehu XWJJ|M Sch XM“|W _E:m . Aww:

Further details will be given in Section 3. Here we note only that this decomposition
f the FRW shift into three components allows simple estimations of the additional shifts
f photons of CMBR caused by, e.g., spherically symmetric clusters and voids between

= 0 and z = 1000. (For example, if there is a void, then the ”blueshift of expansion”

imply does not exist; Mészaros 1994.) The literature dealing with this effect since the
aper of Rees and Sciama (1968) is quite rare, and will continuously he discussed during
he article. Here we mention only some of them.

Dyer (1976) confirmed the conclusion of Rees and Sciama (1968), and concluded that
he additional blueshift of CMBR due to an expanding spherical supercluster increased
ubically by the size. Kaiser (1982); Nottale (1984) and Dyer and Ip (1988) developed
he calculations of Dyer (1976) concerning the case of spherical supercluster. At the last
ears - trying to explain the COBE data by this effect (see Section 2.4) - several papers
ccurred in the topic (Fang and Wu 1993; Arnau et al. 1993; Sdez, Arnau and Fullana
993; Wu and Fang 1994; Mészdros 1994; Tuluie and Laguna 1995; Nakao et al. 1995).
1 essence, the first four papers again discussed the model of spherical supercluster.
ontrary them, the paper of Mészdros (1994) deals with an empty spherical void. The
ubical increasing is again obtained by a new analytical calculation. The calculations
re also confirmed by Nakao et al. (1995). Tuluie and Laguna (1995) did not consider
he exact spherical symmetry, but in fact they again obtained the same size of effect
nown previously for the case of spherical symmetry. This suggests - together with
anek (1992) and Martinez-Gonzdles, Sanz and Silk (1994) - that the restriction to the
sherical symmetry is not a loss of generality.

In this paper, in essence, we continue the discussion of Rees-Sciama effect. We
evelop the considerations of Mészdros (1994) for the spherical model of a void and
ipercluster, and estimate the expected dipole and quadrupole anisotropies caused by
ich a void and supercluster. These calculations will be applied to be interpretation of
1e data of Lauer and Postman (1994) (see Section 2.4). In addition, the theore
pper hmit of the Rees-Sciama effect will also be discussed.

2.4. Observations
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The dipole anisotropy was first convincingly seen by Oo:w.:: (1969) and Em.swv\
(1971). The present result is an average over many elegant experiments as summarized
by Smoot et al. (1991, 1992). One has:

T =Ty + 8T cosw, To=(2.735+£0.060)K, ¢T = (3.36 +0.1)mK,

where w is the angle between the direction defined by [ = (264.7£0.8), b = (48.2£0.5),
(1,b are the galactic coordinates), and the measured direction, and T is the measured
temperature of the CMBR having the spectrum of blackbody radiation.

The most important measurements concerning the further anisotropy terms of CMBR,
give the upper limits §T/T =~ (1.5 —4.0) x 1075 on angular scales ~ (0.05 — 10) degrees
(Weiss 1980; Uson and Wilkinson 1984; Readhead et al. 1987; Davies et al. 1987) or
direct values §T/T =~ 1.1 x 10~° on angular scales ~ 10 degrees (Smoot et al. 1992;
»COBE data”). Similar direct values on smaller scales were also measured at the last
years (Ganga et al. 1993; Bennett et al. 1992; Bennett et al. 1994; Cheng et al. 1994;
de Bernardis et al. 1994; Devlin et al. 1994; Dragovan et al. 1994; Gundersen et al.
1995; Ruhl et al. 1995; Lineweaver et al. 1995; Netterfield et al. 1995). Hence, one
may claim that there are two well measured anisotropy terms of CMBR: the dipole ani-
sotropy of order ~ 102, and the high spherical harmonics of order ~ 10~° on typical
angular scales ~ (0.05 — 10) degrees.

The standard interpretation of the first term assumes that this is a Dopplerian shift
caused by the peculiar motion of Local Group (Peebles 1993). In this case the direction
of this motion must be identical to the direction of maximum of dipole anisotropy
of CMBR. If this is correct (see Section 2.2), then the motion of the Solar System
relatively to the preferred frame following from this dipole anisotropy of CMBR is
given by the velocity vg = (370 & 10)kms™" toward the direction a = 11.28, § = —7°
or [ = (264.7+0.8)°, b= (48.2+0.5)°, where , § are the ecliptic coordinates.

The second terms are caused either by the Sachs-Wolfe effect {Wright et al. 1992;
White, Scott and Silk 1994; de Oliveira-Costa and Smoot 1995; White and Bunn 1995);
or by the Rees-Sciama effect (Fang and Wu 1993; Arnau et al. 1993; Sdez et al. 1993;
Mészaros 1994; Wu and Fang 1994; Tuluie and Laguna 1995).

The first comparison of the motion of Sun defined by the dipole anisotropy of CMBR
relatively with the peculiar motion of Sun defined by the galaxies were done by mﬂm::y
(1967), who used de Vaucouleurs’ and Peters (1968) earlier analysis of the motion .Om
Sun in Galaxy, the motion of Galaxy in Local Group, and motion of Local Group within
the Supercluster. A good general summarization of the history of these data are given
by Bérner (1993) and by Peebles (1993).

The peculiar motion of Sun is clearly caused by the cosmologically near objects. For
these and for the farther objects there is a wide literature dealing with the observational
data concerning the existence of large-scale structures. We briefly mention some of
them. A clear evidence of large-scale structures (mainly the existence of mccﬂ.n_cmnﬁ.mv.
are given by Gregory et al. (1980); Davis et al. (1982); Huchra et al. (1983); ww.g&:
and Burns (1985); de Lapparent et al. (1986); Tully {1986). Evidence of ﬁrm. voids
are presented, e.g., by Joeveer et al. (1978); Kirschner et al (1981). Summing up
these observations one may claim that both superclusters and voids of sizes ~ (10 —
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00)h~' M pc are doubtlessly existing in the realm of galaxies at, say, z < 1.

At the realm of quasars the situation should be similar. For example, this is sup-
orted by the investigations of X-ray background radiation arising mainly at z ~ (1-5)
nd caused dominantly by quasars (Mészdros and Mészaros 1988; Bagoly, Mészaros and
[észdros 1988; Bi, Mészaros and Mészaros 1991). It is even possible that some objects
ay exist at distances z ~ (5 — 20), because the newest studies of gamma-ray bursters
iggest that a fraction of these objects may arise in these extreme redshifts (Mészaros
nd Mészaros 1995; Horvath, Mészdros and Mészaros 1996; Mészdros and Mésziros
)96). Hence, it is natural to expect that the structures ohserved for galaxies may be
ctrapolated for larger redshifts, too, where the Rees-Sciama may also occur.

Surveying the observational data one necessarily must mention that recently Lauer
1d Postman (1994) seriously queried the fulfilment of the standard Friedmannian mo-
] of Universe. They announced that the direction of the maximum of the dipole
risotropy of CMBR and the direction of motion of Local Group with respect to the
bell clusters are different. They concluded that either the huge system of Abell clus-
rs moves toward the direction | ~ 220° and b ~ 52° with velocity ~ 689 km/s, or
ere is an intrinsic dipole anisotropy of CMBR of size ~ 2 x 10~2 with the maximum

this direction. At the first case the Friedmannian model is saved, but in the second

se, because the intrinsic anisotropy is assumed to be caused by a global inhomo-
neity across the whole Hubble radius, the Friedmannian model of Universe should
obably be rejected. Both possibilities are strange enough, because the Friedmannian
se needs a never observed stream of the huge systen: of Abell clusters, and the second
se ~ advocated at the last decade by several authors (Mészaros 1986; Mészaros and
anysck 1988; Gunn 1988; Paczyriski and Piran 1990; Turner 1991) - is recently in
ubt (Jaroszydski and Paczyriski 1995). To be as coniplete as possible, two further
ssibilities may occur, too. First, it is quite possible that the conclusion of Lauer and
stman (1994) is incorrect; see, for example, Riess, Press and Kirshner (1995) sup-
rting this point of view (but see also Graham {1996) again confirming the conclusion
Lauer and Postman (1994)). Second, the conclusion of Lauer and Postman (1994) is
rrect, but neither of the two explanations are acceptable, and one has to search for
her interpretation. The study od this last possibility is the main aim of this work.
ncerning the Rees-Sciama effect it is essential to note that its value increases cubi-
lly by the region causing this phenomenon; hence, for large structures this effect may
en be bigger than ~ 1075, For example, at the first paper of this topic (Rees and
lama 1968) it is especially noted that a hypothetical mass concentration of size ~ 750
bc may cause a ~ 1072 departure from the Friedmannian value. This estimation is
actly confirmed by the analytical calculation of Dyer (1976) and Mészaros (1994).
nce, at least in principle, it seems that even the dipole anisotropy of CMBR may
caused by this effect, because - from the observational point of view - structures of
ler ~ (500 — 1000)2~! Mpc cannot be excluded.

Therefore, hypothetically, it is possible that the Friedmannian model is correct, but
re 1s no bulk flow of the system of Abell clusters. and, simultaneously, there is an
rinsic dipole anisotropy of CMBR of size ~ 2 x 107% with the maximum at dircction

12207 and b ~ 52°. "T'his anisotropy should be caused by a mass concentration of scale
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= (500 — 1000}~ Mpc via the Rees-Sciama effect; the mass no:owzﬁ.m,io: should be at
direction { =~ 220° and b ~ 52°. This hypothetical case is highly similar to the standard
Friedmannian interpretation of the Lauer and Postman’s data. Nevertheless, there are
three essential differences. First of all, no flow of the Abell clusters is needed. Second,
there is a well defined size of mass concentration. Third, this mass concentration need
not be near, because it may be in essence at any distance between us and the .Emn
scattering surface. Of course, no observations suggest that mass concentrations of sizes
~ (500 — 1000)A~" Mpc exist. But, on the other hand, such structures ows:g be
rejected from the observational point of view. Hence, it is fully wmn:mmnma to nrmn:m.m
also the hypothetical possibility that the intrinsic ~ 1073 dipole mEmoﬁ_:.vE\ of CMBR is
caused by the Rees-Sciama effect. The investigation of this possibility is the key effort
of this paper.

3. On the Rees-Sciama effect

3.1. Blueshift of expansion

In this Section the Chapter 2. of paper Mészdros (1994) is in essence recapitu-
lated, into which some new author’s considerations and further technical calculations
are added.

Consider the situation that is illustrated on Fig.2. .

Be given an expanding sphere with diameter AB and center O. Fmam.Om this sphere
there is a homogeneous non-relativistic matter expanding in accordance with the matter
dominated spatially flat FRW model. The comoving radius is x (0 < x < 1). In the
exterior there is a Schwarzschildian vacuum, where the points U and V are at constant
distance ry = rv from O. Points A and B move away from O, but U and V are at fixed
distance from O. .

Be sent a light from U across A O, B to V. The period of light s::.vm Ty, Ta, To,
Tg, Ty, respectively, at points U, A, O, B, V. It is known (Rees and Sciama Hw.@mv that
there will occur a blueshift (i.e. (Tv/Ty) < 1). Rees and Sciama (1968) explained - V%
physical arguments - the origin of this blueshift. In this paper the concrete (,w_:m will
be calculated up to the order ~ x3. The terms x";n > 4; will always be omitted. If
some calculations will be exact, this will be said. .

Consider, first, the path of light from U to A. This path is in a Schwarzschildian
vacuum and the point A moves to point U (sphere is expanding). Therefore, the final
shift of light period will be

T, T
%Q\—I = H‘\.—M _beﬁw X .“ _Amo: . AwH:
The Dopplerian shift will be a blueshift (because point A moves toward ﬁom:a O with
velocity va) and the gravitational shift will be a blueshift, too (because the Light moves
toward the central body). Hence it follows

T,  (1—a)/?
Ty~ (1+ 2a)i/

(3.1.2)
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FRY

SCHWARZSCHILD

'ig.2. [lustration of the path -of light that crosses an expanding Fricdmannian sphere sur-
ounded by a vacuum. The light moves from U to V. "FRW” denotes the fact that in the

phere with comoving radius y there is an FRW metric; ”Schwarzschild” denotes the fact. that
n the exterior there is a Schwarzschildian vacuum.

lere ry = (2GM/c?) = 2aox? is the gravitational radius (for the flat model this is
xact), where M is the mass of sphere; ag = (4rGpa3(n))/(3c?) is a constant length;
4 = a{n)x is the distance of point A from O at the time instant ¢(5), when the light
nisses A (7 is the conformal time for this instant); a(n) is the expansion function;
4 = (da/dt) |, x is the velocity of point A at time {(). For the flat model 7 is a free
arameter and we can choose it arbitrarily. Without loss of generality we choose np = 1,
nd in this case ag = 2¢/H. (For the sake of precision, it is necessary to note that H is
he value of Hubble parameter at the time instant, when the photon misses the point
) The right-hand-side of equ.(3.1.2) is a product of a Dopplerian blueshift (A moves
oward to U with velocity v4); and of a gravitational blueshift (light moves toward the
entral body; ry > 74).

Consider, second, the path from A to B. Here one has a standard Friedmannian
dshift. Because the light misses B at the conformal time (1 + 2x), one obtains

Tg a(l +2y)

TRW = =144y +4y7 302
T [FRw 00] + Ay + 4y (3.13)
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because a(n) = agn®. . -
For the shift of light between B and V we receive analogically

Ty, Ty L 1 (3.1.4)
WJM‘ = T _Ueﬁﬁ X Ts _ul:
and hence 1
T, _ (- g (3.1.5)
Tp ~ (L+2EP/2 5 (11— )2

One has 75 = a(1 +2x)x and vp = ((da/dt) {1+20))x- The U.ov_.&mim.s m.rm? H_m again a
blueshift, because point B also approaches to V, but the gravitational shift will be red,
because the light is going up in the gravitational field of sphere. . .

Finally, we express the whole shift as the product of the partial shifts

T Tg Ty Ty
|Dopp xmw Seh X7 |FRW X T IDopp Xy lseh (3.1.6)

T, Ta
MJQ blue— NJQ

or

H 5\ .1
d s Ta fa ' W S TS O -5
Ww blue= Aﬂ mm%v x Aﬂq. [Dopp xﬂm _bs%v X Aﬂc |sch T _miv (
Now we calculate these partial shifts in the brackets. . .
A. The Friedmannian shift is given by equ.(3.1.3), where we used Friedmannian
solution for flat model (case k = 0). i o
B. Next we calculate the term in the second bracket of equ.(3.1.7), which is given

b . . )
’ Ta Ty IDop= (1—zayt/? y (1- ‘ES. (3.1.8)
Wm |Depp xmjw Dopp— (1+ m%v_\u Cl_.va{u
We have
74,8 = a(na,B)X (3.1.9)
and ,
_ a'(nasB) 3110
vap = drap/dt = (da(na,p)/dt)x = ma? (3.1.10)

where a/(n) = da(n)/dn. Now, using equ.(3.1.10), after a short calculation we obtain

; .N
.. N . (3.1.11)

m\allwlwxu \wm|h u|_|.NV\

We substitute these velocities into the equ.(3.1.8), and after some calculation we obtain

Ta | 9 Tv
g \Dopp
Ty Ty

_Uowt” 1-— »_X + MN/V~ - AO/\w + DA/,,J.

where O{x") means the sum of terms Xt >4 Fqu.(3.1.1.12) defines a bluesl
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C. Third, we calculate the fravitational part in equ.{3.1.7) (terms in third bracket).
Analogically to the Doppleriar case. we obtain

TR O L e
W”QI Sch lem _rrmr.| AH — Wwvw\m x AH — WVM\N_ Awwwwv

where U, V are fixed points ard ry = ry. Therefore the form of equ.(3.1.13) will be

Ta Ty (1— WVH\N
== i5ch X == |seh= 7773 (3.1.14)
Tz T8 (1- ﬂmvw\w
where i a
rqg =a(l)x = 3% TB= a{l+2x)x = %ﬁ +2x)2x. (3.1.15)
With these ra,rp, 7y we calculate (3.1.14) and obtain
N._\— N.w\
Ty {sen ¥ Ts |sen= 1~ 8x> + O(x*). (3.1.16)

This is again a blueshift.

Finally, we can write the total shift of light between the points U and V as the prod-
uct of these three (Friedmannian, Dopplerian and Schwarzschildian) shifts according to
equ.(3.1.7). We obtain the blueshift

Te

W line= 1 — 16x3 + O(x%). (3.1.17)
This is the blueshift of expansion. The physical meaning is explained by Rees and
Sciama (1968).

We transform the result (3.1.17) into physical variables using the physical radius y
instead of comoving radius x.

Be given the Friedmannian solution for the flat model. From these equations it
follows that da/dt = 2¢/n. But we also know that (de/dt)/a = H and therefore we
obtain the relationship a = (2¢/H)n?. Because y = a), and one may take ¢ = 1, we
obtain the identity

-8
X= 59 (3.1.18)
Substituting equ.(3.1.18) into equ.(3.1.17) get
Tv . 4 2H?
o prue=1—-16x" =1~ Y- (3.1.19)

We get the effect of third order, and one may say that the blueshift of expansion
increases by the cube of size.

Repeating these calculation to the case of the hyperbolic model the whole calculation
will be analogical to the case of fiat model. Only some relationships should be changed.
For example, the expansion function has form {c[. Weinberg 1972}

a(n) = azicoshn— 1), coshy = Mw -1, (3.1.20)
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where again ag = (4/(3¢%))7Gp, and @ = p/pe {pis the density and p is the critical
density). Then the calculation of the three different shifts (Friedmannian, Dopplerian
and gravitational) of the light period for the case of hyperbolic model is practically iden-
tical to the case of flat model; hence no details are needed here. The total shift, which
is the product of the partial shifts (Friedmannian, Dopplerian and Schwarzschildian
shift), is given by

Tv 2 1420

Ty lbtue=1 - 3P
This is the final result in the case of hyperbolic model with 2 < 1.

To transform the result (3.1.21) into physical variables one has to use the physical
radius y instead of comoving radius x). One has: da/dt = c(sinh n)(coshn — 1)~ =
¢(1—Q)~Y2. Because (da/dt)/a = H, we obtain the relationship a = cH~1(1— Q)12
Because y = ay, we finally obtain the identity

H

x=——(1-2)". (3.1.22)

S+ 0(xY). (3.1.21)

Now we substitute equ.(3.1.22) into equ.(3.1.21) and we get

2H3
3c3

Tv 2 1+2Q 4 i
—_— :muH~||.||||||| =1
Ty lot uﬁlbvu\ux +0(x")

(1+20)y° +0(y").  (3.1.23)

We can see that this result for limit = 1 gives equ.{3.1.19).
In case of the elliptic model the whole calculation is analogical to the case of flat
and hyperbolic model. As the result one obtains that equ.(3.1.23) holds for any © > 0.

3.2. Correctness of calculation

In this Section we show that the use of specially relativistic Doppler formula in the
neighbourhood of a big mass sphere is correct. This is still a not published new result
and is in fact an addendum to Mészaros’ calculations (Mészdros 1994).

Consider the situation illustrated on Fig.3. This is a space-time diagram that de-
scribes the behaviour of two null world-lines in the Schwarzschildian field.

Be given two fixed points U and A’ in the Schwarzschildian vacuum. The point
A is on the surface of expanding sphere, and moves toward the point A’. Be sent a
light beam from point U toward the point A, and when it reaches the point A, let the
distance between points' A and A’ is s. The light moves on a null world-line. After a
time interval Ty be sent a second light beam from point U toward A. It moves also on
a null world-line. Let it be arriving into A exactly in that moment, when this point
misses the point A’. One has Tyr = Ty+/1 — rg/r’y, where Ta is the period seen by
observer at A’. We can also write s = w41 4r, where v, is the velocity of the point A
toward A’. (This distance is measured by observer at A’.) We can write

s=vaTa =v.Tuy/1—rgfrar < Ty = A (3.2.1)

because ry/rl < 1, vy < ¢, and /]
obtain the result s < Ag. Therefore, for us it 1s enough to test ihe change of the

T Ter SRR W Vo
—rg/r’y < 1, where A s the wavelength. We
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e
> surface

Fig.3. Space-time diagram illustrating

the correctness of the formulas of Spe-
4 O cial Theory of Relativity; for more ex-

planations see the text of Section 3.2.

chwarzschildian metric for distance not bigger than A on the surface of the mass
here.

In this distance range near the surface of the mass sphere the metric is Minkowskian
ith a very high accuracy. This precision may be estimated as follows.

Qur initial formula is the expression for Schwarzschildian metric in isotropic Car-
ssian coordinates. This is the following (see, e.g., Kuchal 1968, Section 3.2, page

16) .
1—T2q2 r .
2 _ ar\ 252 9 \4[ .2 2 2 .
ds? = F+wv dt? — (1+ 72)*(de” + dy” + d2), (3.2.2)

here » = /22 + y? 4 22 . Here unusually we use the Cartesian coordinates, because
1 these ones we can see better the deviations from Minkowskian metric. Now we have
5 find a coordinate transformation, which transforms metric (3.2.2) into Minkowskian
retric around the point (zg,0,0), where =g 3> ry > 0. The basic criterion for the
Minkowskiness” of a given metric is that at the given point the coefficients in the
retric should be exactly Minkowskian ones and in the neighbourhood of this points the
1etric should be nearly Minkowskian.

One of the possible transformations, which fulfils this expectation, is the following:

' =qlz—z0), ¥ =qy, 2 =gz, ' =0, (3.2.3)
'here
.o\ 2 _ e
5 ? + Nwlov L Q= Hmm (3.2.4)
‘lien we obtain
ds® = By (2,9, 2')c2dt"™ — Ba(a', y' 2 (da'? + dy'? + d=", (3.2.5)
here , .
o -2 -
Bl s =0Q C RN CITETSE \+ (> + N\:\iv g
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9 -2
i 3.2.6
T " 4 /(2" /g + zo)? + (y* + uav\%v 25
and 4
- g o =
b= (4 ) il

One has: Bi(z0,0,0) = By(g,0,0) = 1, i.e. at point (20,0,0) (in new coordinates at
point z¢ = y* = z* = 0) the metric is exactly Minkowskian. Without loss of generality
we restrict ourselves to ¥ = 2z’ =0, and |z'| < A. For these values one may write

B =142 4 0((x'/20)2), (3.2.8)
Zg g
'

By =1- 25 4 0((x'/20)%), (3.2.9)
To Xo

where zo is big comparing with r,, and where O((z'/zo)?) means terms of order
(z'/z0)?.

For illustration we choose the case zo = 1074, and therefore ry /2y = 0.1. Obviously
z' =~ X is not bigger than, say, 106 cm, and the minimal characteristic cosmological
distance is 2o ~ 1 Mpc ~ 10!7 cm. This means that 2//zo < 107!, Hence, equs.(3.2.8)
and (3.2.9) show that the departure of B; and By from one is maximally of order
~ 102, This is the maximal departure from the Minkowskian metric around the
point (zo,0,0).

We see that the use of the Doppler formula in our case is - up to the precision
~ 10712 - correct. )

3.3. The profile of the blueshift of expansion

In Mészéros (1994) there is given the blueshift of expansion for lights crossing the
center. In Sections 3.3-3.7. the key ideas of this paper are recapitulated and further
calculations are added. )

Consider the situation illustrated on Fig.4. Similarly to Mészaros (1994), be given
an expanding sphere with diameter AB and center O. Inside of this sphere there is a ho-
mogeneous nonrelativistic matter expanding in accordance with the matter-dominated
Friedmann-Robertson-Walker (FRW) model determined unambiguously by the Hubble-
parameter H and by the ratio of density to the critical one . The comoving radius is
x (0 < x € 1). In the exterior there is a Schwarzschildian vacuum, where the points
U, V and H are at constant distances from the center (ry = ry < rg). On the other
hand, points A, B, C, D and E move away from O.

Let a photon be sent from U to V and further to H. The periods of photon at
these points will be Ty, Ty, T, respectively. The purpose of this Section is to calculate
[Tv /Ty] and [Ty /Ty, respectively, for any 0 <o < 5. In Mészaros (1994) and also in
Section 3.1 only the special case o = 0 was considered.

Trivially, one has

Tv Te Tp Ty
= = - X Xome—
v Tu Te  To

(3.3.1)
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Fig.4. Mustration of the blueshift
of expansion due to an expand-
ing sphere with comoving radius x.
Sch The photon moves from U to H
across C, D and V. The line OF is
perpendicular to CD and AB.

‘here T and Tp are the periods of photon, when it crosses the points C and D,
espectively.

We assume that photon crosses the line OE at the conformal time (74 + x). Then it
risses the point C at the conformal time nc = (14 + x(1 — cos@)). At this instant the
istance of point C from O is r¢ = a(nc)yx; and the velocity of C in direction OC is v¢ =
~Hne)(da(n)/dn)l,ecx, where cis the velocity of light, and where a(y) = ao[dQ(n)/dn)
s the expansion function; ag is a non-zero constant having the dimension of length, and
ither Q(n) = (sinhn — 5) for the hyperbolic FRW model, or Q(n) = (7°/6) for the
arabolic model, or Q(n) = (1 — sinn) for the elliptic model.

[T / Ty} will be defined as a product of a general Dopplerian shift, and of a Schwarz-
childian blueshift (r¢ < ry). It follow

NJO NJQ NJQ ﬂﬁ C - WPV:N
m e Twemﬁ X m Sch = ‘_UQE, x %_ Awwwv

vhere ry = 2a0x® is the gravitational radius {see Mészaros (1994)). The concrete value
f Dopplerian shift need not be specified (see equ.(3.3.6)).

Between points C and D there is a Friedmannian redshift; at point D the light will
e at the conformal time np = (n¢+2x cosa) = (94 +x(1+cosa)). Hence, one obtains

\Hb Adbv Tp Tp m._b
T A:Qv T e x _USG X T, \Sehs (3.3.3)
vhere \
TgnN1/2
Tp AH - ﬂan
T |Sch = 7 s 3.34
Te ach (1- @Ltu ( )
Te
nd ﬂ =

he results of Mészdros :w.ﬁv one uses §e ﬁwﬁ. that _zwieoa: :5 _5::..@ T m_:_ D the
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comoving length is 2y cos o. Then, obviously, the ”blue” term in equ.(3.3.3) is cos®

times smaller than the relevant blueshift of expansion given for a« = 0 by Mészdros
(1994). The Dopplerian part again need not be specified (see equ.(3.3.6)).

Obviously, [Ty /Tp] will be defined by the product of a Dopplerian shift, and of a
Schwarzschildian redshift (rp < rv). Hence, it follows

v Tv Ty Tv (1- Wwv:,m
m _H:Eu X m« SEh — _boﬁz X ﬂwwwp\lm. Awwwv
One must have 7 - T
C D \%
_Deuﬁ x _Ucuﬁ X ~U£§ =1 Aww@v

This relation must be ?5:&_ _umomcmm between e:m points V and U there should be no
Dopplerian shift (V does not move relatively to U).
Under this condition one obtains from equs.(3.3.1 - 3.3.6)

Tv Tv ‘HQ ﬂb Tp Tv
Ty = T, e = _m% X _mg X _z.a X o lsen- (3.3.7)
Calculating the concrete value it is essential to note that
r _ g 1/2
Te %m Ty, (-
T —lscn x _mg X T 15eh = (=) a I.MWVH\N #1 (3.3.8)
Yo

in the general case. After a straightforward calculation one obtains

Tv 233

H|_2§ =1-—3

Q
cos & AI sin a + E cos? Qv

5 3 (3.3.9)

where y = a(na)x

This relation reproduces - for the special case o = 0 - the result of Mészaros (1994).
On the other hand, for the special case a = m/2 it gives no blueshift; from the physical
point of view a quite correct result. Equ.(3.3.9) defines the profile of the blueshift of
expansion (i.e. the dependence of the blueshift on o).

Between the points H and V there is only a further Schwarzschildian redshift. Hence
it follows

Ty Tv Tu Ty (1 212
Ty = Ty e * T, 150 = gy b X r i (3.3.10)
ry

3.4. The profile of additional redshift due to a void

Similarly to Mészdros (1994) consider again the model of spherical void illustrated
on Fig.5. Its actual and comoving radii are y and x, respectively.

QOutside of void there is a matter expanding in accordance with FRW model; in it H
is the Hubble parameter and € is the ratio of density to the critical density. These two
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FRW(Q ,H)

ig.5. Illustration of the non-Friedmannian shift due to a void. The interior is a Minkowskian
acuum; on the edge of void there is matter with a negligible thickness. Outside of the void
here is Friedmannian exterior. Two photons (I and II) are sent from E and P, respectively,
o X. The significance of other points and angles is explained in Section 3.4.

arameters define unambiguously the Friedmannian exterior; x defines unambiguously
he size of void. On the edge of void there is a transparent layer of matter with a
egligible small thickness; if this matter were distributed homogeneously in the sphere
vith diameter AB, then the density would be identical to the density of exterior. Inside
f void there is a Minkowskian vacuum.

Consider two photons arriving into X at the same time. Point X is at the comoving
listance yo > 0 from the edge of void. (Note that it may also be xq = 0.) Photon [
rosses the void; photon IT does not cross the void. Photon II will have a Friedmannian
hift, and is taken for comparison. Photon I will have a greater redshift than II, and
ts value is known (Mészaros 1994) for &« = # = 0. Here we find its value for arbitrary
) < o < (n/2). The period of photon I arriving into X is T, the period of photon II
t X will be Txrr. One also has Ty = Tp.

Immediately it follows

(Lo /By (B Tey (B, )"

Che first step in this relation is obvious; between points E’ and E (X and F; F and
) there is the same I'riedmannian shift as between P’ and P (X and R; R and R’).
Che second step follows from the following consideration. Between I)" and E™ (I and
ift, because between them there is a constant

7} there is a pure Schwarzschildian sl

[S2]
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distance. On the other hand, between E” and F” there is a pure Dopplerian shift,
because these two points move in fact in a Minkowskian vacuum. Hence, between
F’ and E’ the shift is a product of Dopplerian and Schwarzschildian ones. Thus, one
obtains (see equ.{3.3.9))

T -1 2¢3 Q 1429 By 8
Amﬁ|~u Ezmv =14 mw nOmQAMmE o+ {oomev =14 NW \AQ“SY
E 3
(3.4.2)
where

¢ X ] .
sin i = ———sina = ksine, 3.4.3
5 X + Xo ° ( )

and where yg is the actual distance between X and B. Of course, in function f{a, ()
the dependence on a may be changed into a dependence on 8 and on k = y/(yo + v).
Then the function f(8, k, §2) define the profile of the non-Friedmannian shift due to a
spherical empty void for 0 < g < m_ where m::a =k < 1. For Q < f < = the shift is
clearly Friedmannian.

3.5. The profile due to a cluster

Consider the model of spherical cluster illustrated on Fig.6. There is an inner
expanding Friedmannian region (FRW,; ”interior”) surrounded by a Schwarzschildian
vacuum. All this is immersed into a second Friedmannian region (FRW,; "exterior”).
Then the Hubble parameters and the ratios of densities to the critical ones are H;, £
and Ha, )3, respectively. The comoving radii of interior and exterior are X1 and xa,
awmﬁmosﬁw—%

These six quantities define unambiguously the model of cluster. They are not in-
dependent. One of these parameters (say xi) is defined by the remaining five ones,
because the total mass of interior must be identical to the mass of a sphere with radius
OA in the FRW; metric (Einstein and Strauss 1945). This means that one must have

QHXHDHE‘W = DMXm@iQ (3.5.1)

where a; (az) is the expansion function defined unambiguously by H; and ©; (by H, and
Q) by the standard relations of Friedmannian cosmological models. (E.g., if Qs < 1,
then ay = ¢/(Ha/1—Q3).)

The cluster has arisen at a given time at past. This question is discussed in de-
tail by Dyer and Ip (1988), and therefore only a short recapitulation of some ideas of
this paper is presented here. There are in fact two possibilities: the cluster is either
”synchronous” or "asynchronous”. The pairs H;, Q; and Ha, Q3, respectively, define
unambiguously the age of interior t; and exterior -, respectively, by the mg,:&m& rela-
tions of Friedmannian cosmology. {For example, if Q; = 1, then t; = 2/(3H;). Or, for
example, if Qs < 1, then {5 = EW;CISNVLIDMAE 1 —04)3/%) " Larccosh((2/2)—1)].)
For the synchronous case one has ty = t5. This means that here the four quantities
Hy, H3,Q, Qs are not independent, and one of them (say Hj) is defined by the remain-
ing three ones unambiguously. On the other hand. for the asynchronous model one
should have t; —ts = {1, > 0; formally the birth of interior is before the birth of exterior.
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FRW; (Q2,1)

».6. Illustration of the non-Friedmannian redshift due to a spherical supercluster. The
erior of expanding sphere with a Friedmannian metric is immersed into a Schwarzschildian
-uum. These two parts together give the region of supercluster. Beyond this region there is
“riedmannian exterior. Three photons (I, II, I1I) are sent from E, K and P, respectively, to
The significance of other points and angles is explained in Section 3.5.

fact, the physical birth of cluster is after the initial singularity. (This is-quite possible,
Jeed; see, Bonnor and Chamorro (1990) and Mészéros (1991).) Nevertheless, once the
ncrete value of {iq4 is introduced by physical arguments, the equation ) — &3 = 44
again solvable unambiguously similarly to the synchronous case. Hence, in any case,
e four quantities Hy, Ha,Q;,Q, are not independent, and one of them is defined by
e remaining three ones unambiguously. The concrete formula of this dependence can
- written down in the mm:mnw_ nmmm (For example, let it be Qg < 1 < Qy, and t1ay > 0.
1en one will have: H; '[(1—Q2)71 —Qp(2(1 = 04)3/*)~Larccosh ({2/22) — 1)] + tiag =
M — 1) = (2(94 — 1)32) " arccos((2/€4) — 1)].) As is discussed by Dyer and
(1988), several combinations are possible; both €2, and @, may be either smaller,
equal or bigger than unity; the interior may also be collapsing for €2; > 1; any case
ould be considered twice, because it can be either synchronous or asynchronous. In
dition, some combinations are excluded. (For example,if ) = Qs =1, and #44 = 0,
en one should have H; = Hs, and thus no cluster is existing.) In order to keep the
nerality and, simultaneously, to avoid the listing and detailed discussion of several
mbinations, the best procedure is simply to calculate the profile of Rees-Sciama effect
any four Hy, Hs, Q4,25 quantities. In what follows this is done.

Let three photons {denoted as photons I, IT and I1I) be sent to X from points E, K
d P. The periods are the same at the instant of emission, and they are also sent at the
me time instant {defined by the conformal time n4). This means Tz = Tx = Tp. The
oton I (11, ) - arriving into the point X - will have the period Txy (Txyr, Txii1)-
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For photon II one has

(s ) (i I

Tx Tp Ty ! Tp»
2¢343 Q; 2 1420
=1+ < Nm cos Qmmlm sin” ag + ES% vav (3.5.2)
H; 2 3

where yo is the actual radius AO at conformal time 14. Between the points F’and E’
the shift is identical to the shift of photon I in the case of void. This is given by the fact
that the motion of these points does not depend on the distribution of matter inside the
sphere; we again have a shift given by the product of Schwarzschildian and Dopplerian
ones. Between the angles the relation is
. _ X2 ] r
sinf = IRXN e sin g = l]? o sin ag. {3.5.3)

Here the non-Friedmannian shift is identical to the case of void; it is clear from equs.(3.4.2
- 3.4.3).

For photon I one may proceed as follows. Consider two auxiliary points S; and S;
being in Schwarzschildian vacuum at constant distances rg, and rg, from O. Then one
has

T . Hw— 2 M;mu " MJm; . ma.mﬂ_ . A - Nv:w
o Tgr  Toy  Toy Ter 0" = %ﬁ:u
_ rg1/2
Ts, T (1 _m.ﬁ
X T X Ty, |Dopp % A= 2o (3.5.4)

The first and last term were immediately ogwEmEm as products of Schwarzschildian
and Dopplerian shift. Ts,/Ts, is given by equ.(3.3.10). Using this and equs.(3.5.2 -
3.5.4), one obtains

Aﬂxi Hf:v _ AW .Ev

NJM N‘vu WNJ_Nw: \\N._Nu\
2c%3 QD ., 142
1+ Nmm cos QmA% sin® a9 + E.wbmlvoo% o&v
2¢%3 Q 1420
- WM: oOmSA%mEmS +A +w 1) no%o:v
Mn an@u )
= w+ mw .\.AQM._@JV - mw~.\AQ:DHVM A.wmmv
where y; is the actual distance between O and D, and where
Y2+ Yo

Thus, the profile of non-Friedmannian shift s m,.:‘o: by equs.(3.5.5 - 3.5.6) for 0 < B <
B1, where sinfgy = y1/{yo + o), and by equs.(3.5.2 - 3.5.3) for #; < F < 2, where
sin Bo = yo /{3 + ya). For B2 < 3 < 7 there is, of course, a Friedmannian shift.
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3.6. The decomposition

For the case of void it is a mathematical exercise to decompose the function f(3, k, Q)
lefined by equ. (3.4.2) - into trigonometric Fourier-series. Function is defined for
< B < 8. It may also be defined for [B,7); in this region it is identically zero. It may
o be generalized for —n < 8 < 0 by relation f(8,k,Q) = f(=8,k,Q).

One obtains
o0

f(B,k, Q) = Ewwulb'v +M\:A»,Svoomzm‘
n=1

fa(k, Q) = 1 \Am k,Q)cosnfdf = \ F(B,k, Q) cosnf dp

TJon

\ %AQQ ooanOJ:m &nf Awd.:
1-k2sina

rere cos nf should be explained by the powers of cosa. The coefficients f, (k, Q) are
alytically calculable; for n = 0,2,4, ... via the complete elliptic integrals, and for
— 1, 3,5 even exactly.

The relevant relations for n = 0, 1 and 2 are the following:

o= S[5(5.8) -0 751

+wm% T:m . wvm@v »v + (3K — k% + MEAW »: .
f(k,Q) = me J
Folk, Q) = — fo(k, Q) + M:w ? +k E@& - 3@@.2
+ mmw% Ta — B (1~ %E@;v + (3k* + 7k — sw@u E (3.6.2)
here (see, e.g., Gradshteyn and Ryzhik, 1980)
\oi /1 —k2sin®y dy = m@&
%nw@;v. 0<k<l (3.6.3)

Here fo(k, ), f1(k,Q), f2(k, Q) define the monopole, dipole and quadrupole ani-
tropies, respectively, seen by the observer being at the point X. For rough order
timation, if k ~ 1, one may take {fo| ~ |fi| ~ |f2| ~ L.

For cluster model no further details are necessary. The only difference s that
e above calculations must be done two times; first. for f{ao,Q24), and, second, for
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fle1,1). In the first case the above results are immediately usable, if one substitutes
k by ko = ya/(yo + y2), B by fa and Q by Qj; similarly, in the second case the above
results are immediately usable, if one substitutes & by k1 = y1/(yo + y2), 3 by $; and
Q by §,. Hence, again, for rough order estimation, if k1 ~ k2 ~ 1, one may take

[fol ~ |fil ~ [ fal ~ L.
3.7. Discussion of Sections (3.3 - 3.6)

Under the assumptions used in Sections 3.3 - 3.6 (exact spherical symmetry, Minkow-
skian vacuum in the void, etc...) the obtained relations seem to be exact. Nevertheless,
there are possible three modifications even under these conditions, which will shortly
be discussed here.

First, the considered lines are not straightlines in general case. For example, the
line between U and H on Fig.4 is not exactly a straightline. Clearly, when the photon
misses the point C, the distance of this point from the line AB is smaller than the
distance of point D from line AB, when the photon misses point D. The difference is
(rp{np)—rc(nec))sina = (da(n)/dn)ly=n.x*sin 2a. In addition, even the lines UC and
DH are not straightlines, because they are geodetics in Schwarzschildian metric. The
departure may be estimated as follows. Specially, for o = (r/2) on Fig.4, between U and
V the photon moves on a hyperbola in a Schwarzschildian metric, where the departure
from the straightline (in radians) is (2rg/rg) = (8x?/n%). This is the inaccuracy in
the direction for a = (7/2). For a < (m/2) the deviation from the straightline between
U and C, and between H and D should be smaller. Hence, these deviations from
the straighlines are ~ x? corrections (in radians), which are clearly negligible. This
means that line I in the void model and lines T and II in cluster model are also roughly
straightlines; lines IT in the void model, and line III in the cluster model are exact
straightlines.

The second problem concerns the whole calculations of Sections 3.4 and 3.5. In
Section 3.4 (in Section 3.5) one assumes that photons I and II (photons 1, II and III)
are sent at the same time instant, and they also arrive at the same time instant into
X. But, in the general case, once the photons arrive at the same time into X, it Is not
sure that they also were sent at the same time instant; the time needed for photon I
to cross, e.g., distance between points F” and E” (Fig.4) need not be identical to the
time needed for photon 11 to cross the distance between R’ and P’. This so-called ”time
delay” effect is discussed in detail by Dyer (1976). He shows that at the lowest order
this effect is negligible; i.e. only for terms x™; n > 4; is this effect essential. Hence,
fortunately, the time-delay effect is also negligible in our calculations.

One has to remark that the assumption of spherical symmetry is surely a simplifi-
cation allowing analytical calculations. Nevertheless, as it is discussed in detail by Rees
and Sciama (1968); Panek (1992) and also by Tuluie and Laguna (1995), the departures
from the spherical symmetry should not play an essential role. Thus, one may expect
that without the spherical symmetry the conclusion of this paper will not be changed.

Thus, there is a good hope that the profiles - obtained here for the most general
cases of spherical void and cluster models in analytical forms - are correct.
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Discussing the physical significance of calculations of Sections (3.3 - 3.6) one may

the following.

The decomposition into the usual dipole and quadrupole terms of the departure from
Friedmannian shift - caused either by a void or by a cluster - shows that the dipole
1 the quadrupole terms are of the same order. This means that vain is the dipole
sotropy of order ~ 1073 due to a suitable large void or supercluster (this happens,
., for a void with yH/c ~ 1071, i.e. for a void with radius ~ 300h~1Mpc), in this
e the quadrupole term should also be of order ~ 1072, This theoretical prediction is
21 obvious contradiction with the observational data; any quadrupole terms, if exist,
Juld be of order ~ 10~5 or smaller (Benett et al. 1994) (see also Section 2.3). Hence,
seems to be doubtless that no intrinsic dipole anisotropy of CMBR of order ~ 1073
1 exist due to the Rees-Sciama effect. Hence one may also categorically conclude that
. alternative explanation of the data of Lauer and Postman (1994) - namely that the
rinsic dipole anisotropy is caused by the Rees-Sciama effect - falls.

Note still that the significance of these Sections is not given only by the fact that
rejects the possibility of an intrinsic dipole anisotropy of CMBR of order ~ 1073
e to the Rees-Sciama effect. The calculations may be useful at different cases, too.
1e ring-like profiles of the non-Friedmannian shift of CMBR caused by spherically
mmetric superclusters and voids are characteristic and in principle measurable also
r objects with sizes ~ (100 — 300)h~1Mpe; in this case one expects anisotropies of
der ~ 10~%. The measurements of such a behaviour would empirically confirm the

~es-Sciama, effect.
3.8. The upper limit

In this section we calculate the upper limit of the Rees-Sciama effect. The ideas of
is Section were not published yet.

From several papers it may seem that the Rees-Sciama effect is maximally of order
T/Ty) ~ (1075 —107?), where Ty is the temperature of cosmic microwave background,
1d 67T is the departure from this value (Rees and Sciama 1968; Dyer 1976; Kaiser 1982;
ottale 1984; Dyer and Ip 1988; Panek 1992; Fang and Wu 1993; Arnau et al. 1993;
lez, Arnaun and Fullana 1993; Wu and Fang 1994; Mészaros 1994; Martinez-Gonzales,
anz and Silk 1994; Tuluie and Laguna 1995; Nakao et al. 1995; Mészaros and Molnar
)96; Mészdros and Vanysek 1996). Nevertheless, the effect is growing cubically (Dyer
)76; Mészéros 1994) by the scale of causing objects. So it is not so sure that the effect
ill always remain so small. Hence, it is interesting to ask for the theoretical maximum
" this effect. This is the topic of this Section.

Be given a void (see Fig.7.), which comoving distance from us is xo > 0. The
smoving radius of the void is x. Inside of the void there is vacuum, and the matter is
1 the surface of void. The light coming from the last scattering surface being in redshift
= 1000 (z is the redshift) toward to observer being at point O enters into the void at
1e point A, and leaves it at point B. Outside of the void there is a Friedmannian metric,
, which a second light moves across X and Y to O. This light is taken for comparison
2d has a Friedmannian redshift. We consider only the case for © = 1, where £ is the
\tio of the density to the critical one. The cases with € # 1 are different only in the
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Fig.7. lllustration of the maximal size of void. In the expanding sphere with diameter AB
(comoving diameter is 2x) there is a Minkowskian vacuum. Outside of sphere there is a
Friedmannian metric. A light is sent from A across B to O.

factor 3 (Mészaros 1994), and therefore give the same order of results, which is enough
for the purpose of this Section.

In principle the allowed maximum of x may be estimated as follows.

It is sure that at z = 1000 did not exist any objects yet. The value of the anisotropy
of microwave background radiation caused by the Sachs-Wolfe effect shows that the
perturbations of matter existing at z = 1000 were not larger than ~ 107° (Sachs
and Wolfe 1967; Mészdros 1986; Mészdros and Vanysek 1988; Paczynski and Piran
1990; Turner 1991; Mészaros and Molndr 1991; Mészdros 1991; Wright et al. 1992;
Borner 1993, Chapt.11.2.2; Peebles 1993; Mészdros 1993a; Mészdros 1993b; Lauer and
Postman 1994; White, Scott and Silk 1994; Mészaros 1995; Jaroszynski and Paczyniski
1995; White and Bunn 1995; Mészdros 1996; Krasifiski 1996). The present value of the
conformal time for the flat Friedmannian model is arbitrary, and therefore we choose
7o = 1. The conformal time at z = 1000 is 71000. One has a(n:)/a(n0) = n? = 1/(1+2),
and hence 71000 = 1073/2. (The expansion function is given by a(n) = (ag/2)%?, where
ag is a constant length.) We can define the condition (see Fig.8.)

(xo0 + 2x) < Mo — Mmooo = 1 — 1073% = 0.97, (3.8.1)

where xp and x are free parameters.
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We can write the relative departure of redshift caused by the Rees-Sciama effect
om the Friedmannian one as {Rees and Sciama 1968; Mészaros 1994)

T )
MlMH H+E\mx el TAY: X a(nx) (3.8.2)
%W 1-w/c L—rg/ra  alpy)’ e

here w is the relative velocity between the points A and B; 7y = 2agx> is the gravita-
onal radius of the matter that defines the void; r4 and rg are the radii of the void at
a and 7p, respectively; T, Tg,... are the periods of light, when it crosses the points.
ne has: 74 = a(na)x and rg = a(np)x, where np = (14 + 2x) = (1 — x0).

The third term in equ.(3.8.2) is surely finite, because both a{n4) and a(ng) are
nite.

In the first term it can be w = ¢, and then the relative redshift can be infinite.
ne has w = (vq +vp)/(1 + vavg/c?), where va = 2cx/na, v = 2¢x/np. Because
B < va, w = ¢ occurs for vy = ¢. This means that already for 2x = (1 — xo — 2x) this
the case. Hence, the maximal allowed comoving radius of void is given by

1-xo
=z

In the denominator of the second term it can be {1 —rg/r4) = 0 and the relative
=dshift can again be infinite. When we express 74,74 as the functions of x, then we
btain the maximal possible value of x. One has:

X = (3.8.3)

Ty _ W —
el T B— 1 (3.8.4)
‘his gives the same result as equ.(3.8.3).

For xp = 0 we obtain the maximal possible comoving diameter 2y = 1/2; i.e. exactly
he half of the Hubble-radius having the size 6000 h=! Mpc.

All this means that if we suppose the existence of a void with size around ~
000h~*Mpc, then the Rees-Sciama effect becomes infinite. This means that such
reat objects should not exist in nature, because the observations suggest (Section 2.4)
hat the Rees-Sciama effect should be of order ~ 107°.

Note that in this Section the Rees-Sciama effect due to the void was considered.
he case of the supercluster does not lead to the essentially different results; except for
he sign of effect (Einstein and Strauss, 1945; Rees and Sciama 1968; Dyer 1976; sec
Iso Sections 3.4-3.5). The observed objects are of order ~ 100A~ M pc, and this is the
ause that the anisotropies of microwave background are small. On the other hand, the
bserved high spherical harmonics of order ~ 107° on typical angular scales ~ (0.1—10)
egrees (Smoot et al. 1992; Ganga et al. 1993; Bennett et al. 1992; Bennett et al. 1994;
heng et al. 1994; de Bernardis et al. 1994; Devlin et al. 1994; Dragovan et al. 1994;
undersen et al. 1995; Ruhl et al. 1995; Lineweaver ¢t al. 1995; Netterfield et al. 1995)
1ay. be caused by the Rees-Sciama effect.

ot
S

On the anisotropies of cosmic microwave background radiation 1

4. Summary

The main results of this article may be listed as follows:

1. The work gives an useful - of course, never complete - overview of the literature
about the topic (Section 2).

2. Using the formulas of Special Theory of Relativity it is proven that in the neigh-
bourhood of expanding spherical body the Mészaros’ calculations (Mészaros 1994) are
correct. The inaccuracy is maximally of order 1072 (Section 3.1.- 3.2).

3. The profile of the blueshift of expansion caused by an expanding sphere is pre-
sented for the case, when the radius of this sphere is much smaller than the relevant
Hubble radius (Section 3.3).

4. The profiles of the shifts of light periods through a void and through a supercluster
in the most general cases are given. These cases contain all the three Friedmannian
models and both the synchronous and asynchronous clusters (Sections 3.4 - 3.5).

5. The mentioned profiles are explicitly decomposed into the sum of the multipole
terms (Section 3.6).

6. It is shown that the observed difference between the measured direction of the
maximum of dipole anisotropy of CMBR and the result of Lauer and Postman (1994) is
not explainable by the Rees-Sciama effect (Section 3.7). This means that no alternative
exists to the two possibilities for the explanation of the data of Lauer and Postman;
either the either the huge system of Abell clusters is streaming, or the Friedmannian
model is querried. The third possibility is, of course, that the data of observations of
Lauer and Postman is incorrect. However, any of the three possibilities seem to be
strange enough. This is the key result of this paper.

It is shown that - from the theoretical point of view - there is no upper limit of
Rees-Sciama effect (Section 3.8).
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