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We review recent results on resonance decay contributions to 2-particle Hanbury-
Brown/Twiss correlation functions C(q,K). Due to the resonance decays, the
correlator C(q, K) shows deviations from a Gaussian shape. Hence, the spatio-
temporal information contained in the correlator can be extracted only partly
from its Gaussian fit parameters. To extract more information, higher order g-
moments provide an appropriate tool. At least in the models with resonance
decays studied so far, these additional observables provide the cleanest distinction
between scenarios with and without transverse flow.

1. Introduction

Two-particle correlations of identical particles are the only known observables- which
give access to the spatio-temporal evolution of heavy ion collisions. According to the
main result of the coherent state formalism [I], they are determined by the Fourier
transform of the emission function S(z,K) = 3(p1 + p2) with respect to the relative:
pair momentum ¢ = p; — pa, {1, 2, 3, 4, 5]

|f d*z S(z, K) ei?=
:&»a .m.?ymc_u

_N

Cla,K)=1+ (1)

Here, the emission function S(z, p) has an interpretation as Wigner phase space density.
It describes the probability that a particle of momentum p is emitted from a space-time
point z.

The aim of HBT interferometry is to extract via the measurement of C(q, K) as much
information as possible about the spatio-temporal distribution S(z, K). So far, the
interplay between the experimentally measurable momentum correlator C'(q, K) and the
theoretical concept of the space-time emission function S(z, K) was investigated mainly
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Inserting (3) back into (1), one mu%m ime variables shifted by z = z(K) = (z.).

C(K,q) = ~(B™ " )ung"g”
K,q)=1+e Ll (4)
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R (K) ((z: = Bit)(z; — Bit)) — (i — Bit)(z; — p;1)),

_d’C(q,K)

dg; dg; e (5)
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Hence, the expressions R;;(K) denote the curvature components of the correlator
C(q,K) at q = 0 and coincide with the half widths of the correlator only if the correlator

is sufficiently Gaussian. ) . )
Depending on how the on-shell constraint ¢° = B - q is resolved in (4), different

Gaussian parametrizations can be obtained. Especially, using q°, g1 = /2 +¢? w.n&
¢ as independent relative momentum components, one is lead to the Yano-Koonin-

Podgoretskii parametrization [12, 13, 14, 15, 16]
- R (K) ¢ - B (K)(o7 - (¢°)*) - (RS (K) + R (K)) (4 U (K))* (6)

C(K,q)=1+2Xe

where U(K) = v(K) (1,0,0,v(K)}, vy = ,\__1|¢u is a {K-dependent) 4-velocity with only
a longitudinal spatial component. This parametrization has the advantage that the
YKP parameters R} (K), R§(K), and Rj(K) extracted from such a fit do not depend
on the longitudinal velocity of the observer system in which the correlation function is
measured. Their physical interpretation is easiest in terms of coordinates measured in
the frame where v{K) vanishes. There they are given in the Gaussian framework by

[14, 15]

RI(K) =(#)y, Rj(K)~(%), RiK)=~(). ()
For a detailed discussion of the physical meaning of the YKP parameters see Refs. {15,

16]. .
The main importance of the above expressions (5,7) for the HBT parameters resides

in providing an intuitive understanding of which space-time features of the source are
reflected by the various g-dependencies of the correlator.

3. Resonance Decay Contributions to HBT Correlation Radii

3.1. A model including resonance decays

A model is specified by a particular choice of a pion emission function. In the
presence of resonance decays, the emission function is the sum of a direct term plus one
additional term for each contributing decay channel of each resonance species,

Sn(2,p) = S$%(2,p) + ) Srosn(2,P) (8)
R

We have used for our analysis a simple analytical model which assumes local ther-
malization at freeze-out and produces hadronic resonances by thermal excitation. The

emission function for particle species i is taken as
2J; + 1 P u(z) — p; ]
2 1 72 n? (r - ﬂoVNV
J— P — - i P ) @
i) = ,\M Jan(AneE P A 9RE  3(AmE | AT )

S8 (z, P)
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i _ .
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Q‘ )
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WMQWM:M MJMm:%Mﬁﬂ_ mmos velocity v; is assumed to satisfy Bjorken scaling 7, v =
, le. raentily the longitudinal flow rapidity 5 = 3 Inf(1 ith the

. nt = +u)/(1 — v)] with
mvmww SEowE?.m;% 7. H?.w transverse expansion flow 7, wm a linear W_AM:USOSN mm Q.H the
_ From the direct emission function Sdr(x, P) for the resonance decay ormu.sm_ R
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34 3
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S P
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! WMMJ Mmpnm“mw_ogma n_.maoam variables associated with the barent resonance, while lower
enote pion variables. Variables with a star de i i
: note their valu

SmoMm:omm .wmmn frame, all other variables are given in the fixed measurement %MLM the
nomznnwwm M“wm to (1 Mﬁvg a resonance R, emitted with momentum P from a mvwnm-ﬁ.mam

» decays alter a proper time 7 at z# = X*# 4 24 into a pi

2 = —_ a pion of momentum
P and (n — 1) other decay products, R — +ceates+ ...+ ¢y. The dec t
proper time 7 is ['e~T" where T j i B 02
proe o . Where I is the total decay width of R. Here s= (37 EJN
o square Eﬁmzmza wzmmm of the (n — 1) unobserved decay products. It owwuﬁ.:.%

etween s_ = (371, m;)” and sy = (M — m)?. g(s) is the de
partioim &= = (o0 . 9(s) cay phase space for these
The d.pyeenni g from an E%o_.mzaom resonance with isotropic decay in its rest frame
unction (P -p — M E*) implements the energy momentum constraint on ﬁrm.

resonance decay, £* being th. ion i
i~ g the energy of the observed decay pion in the resonance rest

3.2. Results for the correlator

noﬁmwxn.ﬁrmmioa.m_ specified by (8-11), we have calculated numerically the 2-particle
ation function (1). All numerical calculations discussed here were done with the set
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of source parameters T = 150 MeV, R =5 fm, A= 1.2, 5 = 5 fm/c, Ar = 1 fm/c and
pup = ps = 0. Our study includes resonance decay channels of the resonances p, A, K*,
%, w,n, 7', K3 and . Calculating C(q, K) for the direct emission function S¥" (z, K)
firstly and adding then resonance contributions R, we have studied the influence of
resonance decays on the shape of the correlator, cf. Fig. 1. Here, we shortly discuss the

main three effects (for more details, see Ref. [11]):

o the “lifetime effect”
Due to their finite lifetime, resonances can propagate outside of the thermally

equilibrated region before decaying. This tends to decrease the widths of the
correlator. If R is relatively shortlived (' > 36 MeV, say), then the decay of R
takes place close to its production point and the effect on the width of C(q, K)
is small. On the other hand, very longlived resonances (I' € 1 MeV) propagate
up to several em which one cannot resolve on a MeV scale. Thus, they effectively
contribute to the normalization of (1) only, thereby decreasing the intercept pa-
rameter A. The w-resonance finally with T' = 843 MeV lies in between these
extremes. It contributes significant “exponential tails” to the emission function
and seriously distorts the Gaussian shape of the correlator.

e the “shirinking transverse size effect”
In the presence of transverse flow, the transverse size R; of the effective emission

function S&™ of parent resonances shrinks for the model (9). In lowest order
Gaussian approximation, it is

e

Ry=R(1+%07) 7, . (12)

which is smaller for resonances than for thermal pions. Accordingly, the shrinking
transverse size effect tends to decrease the HBT radius parameters, i.e., it tends
to counterbalance the lifetime effect.

e the “non-gaussisity” of the correlator
Resonance decays contribute exponential tails to the emission function which re-
sult in a non-Gaussian g-dependence of the correlator. This follows form the
Fourier transform of the emission function (11),

) 1 ; . .
4 T o .| . ig-T qdir +
\& B UTLQTM» \..Hmu L \%p% Sa'@ P5). - (13)

Here, |,  denotes the integral over the phase space of the parent resonances and
> sums over the two direction in which the resonance can propagate if the decay
pion was emitted in the out-direction. Tke non-Gaussian term ~|m~lv|m« stems from
the exponential decay law and is most important for the w-decay oomm,ivcﬁo:. For
shortlived resonances (I' large), it is sufficiently close to unity, for very longlived
resonances (I' < 1 MeV) it dominates the g-dependence on a KeV-scale thereby
affecting the normalization (i.e., the intercept parameter), but not the shape of
the correlator (1).
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Fig. 1. -parti ~ pai
; an rw a%“o. particle correlator C(q, K) for =~ pairs as a function of the different components
xs _obmu.ocum “ﬂoswg:ﬁ % and for different values of the transverse pair momentum L
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. . - . ﬂr
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4. Q-variances: HBT mﬂnmﬁmmuosmnﬂ% beyond the Gaussian approximation

MHUM:M MMNMOHmB@%w& Interpretation of the correlator, relatively small changes in the

b e and Swm mmumbmm:oo of the ooﬁ&mﬁo.w are important. This makes it indispensable

5 g ey teatures of C(q, K) with a small number of fit parameters. To this
m, the Gaussian HBT fit parameters mw.ﬁmv are commonly used so far.

S oM A R e e

|
|
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4.1. HBT radius parameters for non-Gaussian correlators

For non-Gaussian correlators, a definition of HBT radius parameters is required
which does not presuppose a particular shape of C{q, K). Such a definition is provided
by the second g-moments of the correlator

(14)

y o JPa6igCleK) -1 1
€eiqi) = Td%q[C(q,K) - 1] ) Ab Amﬁvv

i
and the corresponding intercept parameter
- V/detD
M) = X252 [ aq(c(a 1) - 1. (15

In contrast to a Gaussian ansatz, these expressions are well-defined for arbitrary shapes
of the correlator C(q, K). For the special Gaussian case, where the correlator is given
in terms of three independent relative momentum components g;,

C(q,K) = 1+ Ae % Py (16)

the second g-moments are directly related to the Gaussian fit parameters. Especially,
one finds for the cartesian parametrization (2)

R 0 R}
Dij(K)=| 0 R? 0 i,j=o0,5,l. 17
R, 0 R}

For the YKP parametrization (6), the corresponding expression reads

R}, 0 R
DiK)y=[ 0 R} O 4,5=0,1,1, (18)
Ri; 0 R%

where the YKP parameters v, Ry and R)| are determined from Roo, Ros and Ras,

v = —=(1-1/1-@D?? p= Tl __
Y5 ’ R3,+ RZ;’
R2. — 42 R2
2 00 33
Ry = 1422
R3; - v® R}
2 33 00 ;
Rj = = (19)

For D = O_ one has v = O, .mco = mo and NN__ = mwww.
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4.2. Beyond the Gaussian approximation: 1-dimensjonal g-variances
For a correlator of Gaussian shape, the definitions (14
and (19) for the intercept parameter coincide with the
advantage is firstly that they are well-defined for non
ondly, they can be used to study sys :
Gaussian shape. Here, we illustrate
second g-moments are given by

) for the second g-moments
results of a Gaussian fit. Their
. Gaussian correlators, too. Sec-
_,.Q.dmso.mzw deviations of the correlator from a
this point for 1-dimensional g-variances whose

AAQwvv - .\,&Q.. Q..u ﬁQA? Qiz; = O,mﬂv - Z

T 40t [Clar, 4oy = 0,K) 1] 0
1
€e?y = m.m,w for the Gaussian correlator (23), (21)
. - & :
\( AHAV = H\ Q.Q.. _“Q?t Qit; = ou HAV - H.._ . Awwv

S D OCNQQ mOH a OOH~®~@&OH 0* y e t €1 mOH atio 0) ummﬁvozh ng to &FQ
HT@ € pr WH—U~0HN‘~. mrmv T n m. 1l Cor 1 m

ﬁ Amuuﬁ*mm.w ngﬂv H yum " AMMV

Hrm W@w to @CN.S&—&N.&H—CO Mnmnms.mﬂﬂm N.—UO—HH non-

higher g-meomts Gaussian features of C(q,K) are the

AA&.VV — .\&5. q7 ﬁQ@:ﬁﬂu =0, HQ - H.._

Jd4:[Clgi, 527 = 0,K) — 1] o (29
(amy = Gm-L .
t @Rz for the Gaussian correlator (23), (25)
2m+1 _ .
(g » =0 for reflection symmetric correlators (26)

In gen i - i ina

Somb " Mmmwr w_mvmw ¢-moments contain combinatorial factors of the “Gaussian” second
. {a?) (cf. (25)), as well as non-Gaussian information. The n
1es are therefore the cumulants which re :
higher order moments by subtraction:

for interesting quanti-
move the trivial Gaussian contributions to the

AP 1@y
@m =D (g2~ a
The normalization removes the

provides a dimensionless measu
restrict our discussioni of non-

dependence on the Gaussian widths of C(q K) and
res .mS. deviations from a Gaussian shape. Wm_.m we
Gaussian features to the “kurtosis” .

) :
A= e (28)
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4.3. Results for g-moments

For the model (9) of an emission function including resonance decays, we have deter-
mined the 1-dimensional second moments (20) and the kurtosis (28). Here, we shortly
summarize the main results (for more details, see Ref. [11]):

e Second g-moments contain unbiased “Gaussian information”.
In our model studies, the inverse second g-moments ﬁwﬂ coincide with the Gaus-

sian fit parameters R; extracted for a set of n equidistant points F@. ) between 0
and 50 MeV from

 (1og C(a) H2)?
MU A_om Clg”, girgi = 0,K) — log A + RZq)’ vv = min. (29)
j=1

If the fit (29) is applied to a different intervall, between 0 and 250 MeV, say, then
the HBT fit parameter R; in (29) change due to the non-Gaussian shape of the
correlator. In contrast, the second g-moments do not depend on such additional
specifications of the extraction procedure.

o Resonance decay contributions to the HBT-radii RY, cf. Fig. 2.
Due to the lifetime effect, resonances {most prominently the w) lead to an increase
of R, especially in the low K -regime where their relative abundance is high. This
induces for vanishing transverse flow 9y = 0 a finite slope. For finite transverse
flow 7y = 0.3, the side radius remains virtually unaffected. The reason is that
here, the “shrinking transverse size effect” counterbalances the lifetime effect.
The out radius R, receives contributions from both the z- and t-dependence of
the emission function. Due to resonance decays, the effective emission duration
of S(z, K) increases significantly and this induces an enhanced increase of R, on
a scale proportional to B, . In the presence of transverse flow, this is partly com-
pensated by the shrinking transverse size effect.
For the longitudinal radius finally, resonance decay contributions result in a sig-
nificant increase of R; in the low K -region.

Deviations of C from a Gaussian shape, cf. Fig. 2.

In the model (9), the exponential tails due to resonance contributions affect the
correlator for vanishing transverse flow more significantly. At finite transverse
flow, S¥7 is spatially more extended in the transverse direction than S%r and
“covers” a substantial part of the exponential tails of Sp_,,. Hence, the total
emission function (8) and a fortiori the correlator deviate for finite transverse
flow less from a Gaussian shape and quantitative statements about non-Gaussian
features of C(K) allow to distinguish between scenarios with and without trans-
verse flow. Asseen in Fig. 2. , A, provides the cleanest signal for this distinction.
Furthermore, we note that A, shows an increase proportional to ;. This can
be traced back to the non-Gaussian features of S(z, K) which are particularly
prominent in its {-dependence.
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 feat gitudinal direction i
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ignificant already for
mrm cosh(n — y) terms in
Gaussian 7-dependence of the

5. Concluding remarks

Over the past :
years, the ex : :
relati perimental data for 2-particle pion correlations in ultra-

visti . o ;
ic heavy ion collisions have improved tremendously. They are now becoming
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sufficiently accurate to extract not only the Gaussian widths of the correlator but also
its finer structures. Here, we have shown that g-variances provide an appropriate tool
for the quantitative discussion of non-Gaussian deviations of C and we have seen that
higher order g-moments allow to distinguish between physical scenarios which are diffi-
cult to resolve on the basis of Gaussian fit parameters. Especially, in the models studied
so far, the kurtosis A, provides the cleanest signal for transverse flow.

As an additional advertisement for g-variances, we sketch here how ¢-variances can
be calculated directly from the emission function via model-independent expressions.
The starting point is the generating functional

2(9,%) = [ ¢V [C(a.K) - 1, (30)
whose derivatives define both second and higher order g-moments,

— (5" o
AAQ: Q_u...nnavv - A sv @:%’Su...@m; In NA%. Hﬂv y=o ® Aw”_.v
From this generating function, the correlator can be reconstructed completely. The
series of n-th g-variances (31) is merely a convenient way to characterize its shape
starting with its “Gaussian” widths {(g;¢;)) and going for increasing = step by step to
finer structures.
To calculate Z(y,K) directly from a given emission function it is convenient to use

the normalized “relative distance distribution”
p(u; K) = \%x s(X +%,K)s(X -%,K), (32)

[d*up(u; K) = 1, written in terms of the normalized emission function s(z, K) =
S(z,K)/ [ d*z S(z,K). p is real and even in u. Then

Z(y,K) = \&mn Y \%: €% plu; K) . (33)
In the Cartesian parametrization, this expression reduces to a one-dimensional integral
Z(y,K) = \& p(Us, Yo + Bit,u + Bit,t; K) . (34)

which can simplify model studies considerably. A similar formalism can be used for
1-dimensional g-variances, [11].
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