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Nine independent phenomena are described that can degrade the quality of the
calculated values of the third-order nonlinear material electromechanical constants
of piezoelectric crystals. A significant role of one of them - the substitutions -
has been identified in the process of determination of the current values of the
nonlinear constants of a-quartz. This is sufficient to consider these values and
their standard errors generally unreliable. To rectify the problem, the nonlinear
constants should be recalculated using a simple new strategy which is described.

1. Introduction

The third-order nonlinear electromechanical constants of piezoelectric crystals include
four tensors of material constants. They are the third-order elastic, elecroelastic, elec-
trostrictive and third-order dielectric constants. The constants are defined in the natural
state of the crystal by means of the cubic terms (hence the term ‘third-order’) of the
thermodynamic potentials. In this work they are referred to briefly as the nonlinear
constants.

Attempts to determine the nonlinear constants of piezoelectric crystals have been
numerous and have stretched over a 30 years period. Most of the work has investigated
a-quartz. With the search to replace quartz with new piezoelectric materials that have
better properties, it is expected that the process of determining nonlinear constants will
be repeated. Because of the much higher piezoelectric coupling of the new materials,
there will be a keen interest in the process. In order to avoid repetition of earlier errors,
this paper draws attention to the phenomena which may degrade the quality of the
calculated nonlinear constants. They are described and illustrated using the lesson of
quartz.

1presented at the 14th International Conference on Utilization of Ultrasonic Methods in Condensed
Matter, August 30 - September 2, 1995, Zilina, Slovakia

0323-0465/96 © Institute of Physics, SAS, Bratislava, Slovakia 707




708 carl I Hruska

The main body of knowledge about the electromechanical nonlinearities in a-quartz
is represented by the four above tensors with their nonlinear constants referenced to
zero strain and dc field. At this point there are two sets of values in use for each tensor.
They have been determined in a complete (or a very near complete) form [1,2,3] using
four independent data sets and three different experiments. It is believed that their

values are unreliable and that they should be recalculated. This paper will show why
and how.

2. Computation of nonlinear constants and sources of errors

The nonlinear constants of piezoelectric crystals are computed from experimental data
using overdetermined linear systems such as

E=M-X+A, (1)
where E is a column vector containing experimental quantities B;, i =1,2,...,m, Xisa
column vector of nonlinear constants commonly denoted z;,7=1,2,...,n,and m > n.

M is a matrix of elements M;; and A is a column vector of elements A;; both M and A
are functions of the linear (elastic, piezoelectric and dielectric) material constants of the
investigated crystal, crystallographic orientation of the experimental specimens used,
and the geometry and other characteristic features of the particular experiment which
produces E;. The definition of the functions is determined by the nonlinear theory
linking the experimental data and the nonlinear constants. The numerical values of M
and A are calculable and known when system (1) is formulated.

The values of the sought nonlinear constants z; and their standard errors J(2;) are
obtained from (1) using the least-squares fit [4]. A number of errors must be avoided or
controlled in order to prevent a degradation of the results. Nine sources of these errors
are described below and illustrated by examples from literature.

1.-3. Errors in the theory, linear constants and orientation angles

For the least-squares fit to produce valid results, the values in matrix M and column
vector A must be free of errors. Ideally, this means that

(A) their analytical definitions obtained from the nonlinear theory should properly
represent the link between the experimental data and the nonlinear constants;

(B) they should be calculated using correct linear constants of the crystal; and

(C) they should be calculated using exact orientations of the experimental specimens
used.

Most of the effort to obtain realistic values of the nonlinear constants nas been
centered on attempts to satisfy condition (A) with ever increasing accuracy. Classical
examples are the improvements introduced in [6] over [5] and in [8] over [7]; in combina-
tion they resulted, for the first time, in attaining a good measure of agreement between
the nonlinear constants of quartz obtained by two different experimental methods.

Severe violations of (A) have been quite common in the past; the possibility that
some minor ones are still waiting (o be spotted cannot be disregarded. However, all
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implementations of the nonlinear theory are likely to be only wmvnwiw:mﬁm. Therefore,
the goal here is to reduce the errors due to theory to acceptable limits, i.e., safely below
the level of unavoidable errors caused by experiments.

No perfect set of linear constants exists for any crystal and mo;&ﬂo: {B) is ﬁﬁm
impossible to satisfy. To prevent serious distortions of the nonlinear ,nozmaw:nm_ it is
essential to use a set of a good quality. In the case of quartz, there exist a number of
‘good’ sets of linear constants and it is difficult argue which is the ‘best’ [9]. A m.‘:a%
made by Hruska {10] shows that making a choice among the ‘good’ sets can mvvnaﬂwz.%
affect the values of the nonlinear constants. In making a selection, the linear elastic
constants are the most important to consider. Their values should have standard errors
well below 1%.

Different authors use different sets of linear constants in their calculations. A consis-
tent use of one set would be preferable, because it would remove an unnecessary source
of inconsistency and thus enable the researcher to focus on those that are more serious.

It is not possible to expect that condition (C) be ever fully satisfied. mwéﬁar
a recent study made by Hruska [11] suggests that an orientation accuracy with the
standard errors not exceeding several minutes is sufficient. In the past the accuracy of
orientation has not always been reported and this is now seen as a drawback.

4. Systematic experimental errors

The only quantities in (1) that are allowed to include errors are the experimental
quantities in E, and these must be random experimental errors. Theoretically, they are
the sole reason for the nonzero values of the standard errors J(z;).

The danger of systematic errors has been recognized in generating a well defined
uniaxial stress [12] or a uniform transverse dc electric field [13] in quartz cubes. The
same applies to the uniform lateral dc field in quartz plate resonators [14].

5. Under-representation

If, for some value of j, the magnitude of all products M;; - z; .5 system (1) is
comparable with the random experimental errors if E;, then the nonlinear nwnmﬁmzn Z
is under-represented in the system. Its value calculated from (1) will be associated with
an excessively large standard error 9(z;).

Large standard errors are known to plague the values of some electrostrictive con-
stants. An example of their under-representation with all data readily available ow:.Vo
found in [8]. An attempt to remove the problem can be made by optimizing the design
of the crystal samples used.

6. Small number of degrees of freedom

For the standard errors ¥(z;) to be reliable and interpretable in terms of the normal
distribution, it is necessary that the difference m — n, known as the number of degrees
of freedom, be made sufficiently large; 10 or less, as used in some studies, may not be
adequate.

7. Arbitrary multipliers

All experimental values F; in (1), viewed as random quantities, should have the
same standard deviation. Failing that, each linear equation in (1) is to be adjusted by
a suitably chosen multiplier. This is called ‘weighting’ and the ‘ordinary’ least-squares
process is thereby replaced by the ‘weighted least-squares’ [4].
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It appears that in some cases these multipliers are assigned to individual equations
on the basis of an algebraic convenience rather than their true function. This alters
the result of the least-squares proces. It may lead to an uncertainty as to what are the
formally correct values of the nonlinear constants [15]. The uncertainty can reach tens
of percent [16] and thus the use of arbitrary multipliers should be avoided.

8. Near colinearity

A phenomenon frequently present in matrix M is colinearity. It may be difficult to
demonstrate analytically because the algebraic expressions of the matrix elements M;;
are rather complex. Only a single case of colinearity (predicted by numerical means in
[17]) has been confirmed analytically by Kittinger and Tichy [18].

As pointed out by Hruska [19,20,21], the colinearity becomes a problem when turned
into near colinearity. This happens when the matrix elements M;; are not computed
with sufficient accuracy. Then matrix M7 .M, where M is the transpose of M, becomes
ill-conditioned. Its inverse, crucial to the least-squares process, is then poorly computed.
As a result, the least-squares algorithm will produce values of nonlinear constants which
may be incorrect by several orders of magnitude as well as sign. Relevant examples can
be found in [22,23].

To avoid the near colinearity, the matrix elements M;; should be computed using
the double or quadruple precision. Also, the values of the linear constants used in the
calculations should fully reflect the crystal symmetry. A good example is provided by
the elastic constants of quartz, where cgg = 0.5(c11 — c12) due to symmetry. If, using
the units of 10° N/m?, ¢;; = 86.74 and c;9 = 6.99, then cgs = 39.875 should be used
and its rounded off value of 39.88 avoided.

9. Substitutions

According to past experience individual experiments are conducted in order to deter-
mine a selected subset ot the nonlinear constants (e.g., the third-order elastic constants)
which is of interest at a given time. The choice of the experiment is made on the basis
of providing an access — in principle ~ to the full number of the targeted constants. This
is verified by forming and analyzing system (1), appropriate for the experiment, before
the experiment is started.

As a rule, such an experiment does not provide access to the targeted nonlinear con-
stants exclusively or without hindrance. There are always other, ‘unwanted’ nonlinear
constants present in (1). Some of them form unresolvable linear combinations with the
targeted ones (e.g., the third-order elastic combined with the electroelastic constants).
To exploit the potential of the experiment and system (1) towards the determination
of the targeted constants, the unwanted constants which have been determined earlier
are substituted with their published values. In other cases, they are just disregarded,
i.e., substitued with zeros, sometimes with a remark that their contribution is believed
to be negligible.

The substitutions of published values or zeros are made prior to the least-squares
fit which is then executed for the targeted nonlinear constants as the only unknown
quantities remaining in the system. The results are then interpreted mechanically as
the values and standard errors of there remaining constants.

A detailed study made by Hruska [24] shows that the above procedure leads to un-
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controlled and unnoticed logical and numerical errors. Their character and seriousness
depend on the algebraic and numerical properties of matrix M and on the quality of
the substitued values. They always include one or more of the following: a numeri-
cal distortion and/or misinterpretation of the calculated values, a numerical distortion
and/or misinterpretation of their standard errors, and a loss of valuable information.

The occurrence of the substitutions is very common; two real-life examples which
also include an explanation of their consequences are in [24,25].

To prevent some of the undesired effects of the substitutions from happening and
to appreciate the rest, the substitutions can be postponed until after the least-squares
fit is executed {24]. They may then be found no longer desirable. If their impact is not
fully understood, the substitutions should be avoided.

3. Current nonlinear constants of a-quartz

A complete set of the 14 third-order elastic constants of quartz was published for
the first time by Thurston, McSkimin and Andreatch [1] in 1966. Used ever since,
the constants were computed from observations [1,26] of changes in the transit time
of acoustic pulses propagating through bulk quartz under the effect of a hydrostatic
and unidirectional pressure. Although based on a rigorous application of nonlinear
theory, the analysis of the experiment ignored all but the targeted third-order elastic
constants. This means that the determined values and their standard errors suffer
from the problems associated with ‘Substitutions’ as described above. As the order of
magnitude of the disregarded nonlinear constants is now known, the damaging effect
must be quite substantial numerically. For this reason it is difficult to accept these
values as the correct material constants.

The remaining 17 nonlinear constants of quartz - 8 electroelastic, 8 electrostrictive
and 1 third-order dielectric — were all obtained from data [8] on the dc field-induced
changes in the transit time of the acoustic pulses. Observations of changes in the se-
ries resonance frequency of resonators subjected to a dc field bias [5,17,27,28] produced
another set of these constants with three of them available only in unresolvable combi-
nations.

The latest values of both sets have been computed by Hruska [2] in 1992. Unfortu-
nately, in both cases, the desired constants had to be isolated from their combinations
with the third-order elastic constants using their values from [1]. As a result, the cur-
rent values of the electroelastic, electrostrictive and third-order dielectric constants,
together with their standard errors, are not the desired material constants. The im-
portance of this fact must not be played down by the huge success of the two methods
which independently produced almost identical values of the electroelastic constants.

The work of Thurston et al. was repeated recently by Wang in the course of his
Ph.D. work [3] of 1993. His aim was to determine the truly ‘material’ third-order elastic
constants by including in the analysis of the experiment all participating nonlinear
phenomena. Of necessity, the calculations had to involve values of the electroelastic,
electrostrictive and third-order dielectric constants taken from an external source. As
the only available values of these constants are unreliable, the new values of the third-
order elastic constants themselves are likely to be afflicted by the same problem.
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4. Conclusion

The nine potential sources of problems and errors encountered during the course of
nvestigation of the nonlinear constants of a-quartz and described in this paper should
e taken into account when the nonlinear or other material constants of piezoelectric
rystals are sought in the future.

‘The problem associated with substitutions may not be the only reason but it is
. sufficient one to conclude that the eight sets of the nonlinear constants of a-quartz
liscussed in this paper are not reliable and should be recalculated. This can be done
y

(A) computing the nonlinear constants (and their combinations) obtainable from each
available experimental data set separately and without making any substitutions;

(B) searching for and removing all statistically significant conflicts among the nonlin-
ear constants obtained in (A). This may necessitate corrections of the theory of
some of the experiments, a rejection of some experimental outliers, etc.; and

(C) combining all retained experimental data into one set and computing the nonlinear
constants using a single least-squares process.

This should produce a complete set of 31 nonlinear constants of a-quartz, with each
onstant determined in isolation and free from the problems caused by substitutions.
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