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It is well known that the structural phase transitions in ferroelectric materials
are connected with strong nonlinear properties. So we can expect all features
of nonlinear dynamical systems such as period—doubling cascades and chaos in a
dynamical system that contains ferroelectric materials. Therefore we can apply
nonlinear dynamics to these ferroelectric materials and we are doing it in two
directions: (i) We study the structural phase transitions by analyzing the large
signal behaviour with the means of nonlinear dynamics. (ii) We control the chaotic
behaviour of the system with the method proposed by Ott, Grebogi and Yorke.

1. Introduction

The structural phase transitions in ferroelectric materials are connected with strong
nonlinear properties [1]. So we should expect all features of nonlinear dynamical systems
as period—doubling and deterministic chaos in these materials. The aim of the presented
paper is to show that the application of analysis methods of dissipative chaotic systems
is a useful tool for the study of structural phase transitions and for the study of the
large signal behaviour of ferroelectric materials. The investigation of the large signal
behaviour is stimulated by the shift in the ferroelectrics research and development to
thin films with the aim of miniaturization.

So we are enabled to apply the ideas of nonlinear dynamics to our system. Besides
the scientific aspect of applying these ideas to a real dynamical system many of those
ideas are becoming relevant. One of these ideas is to control the irregular chaotic
motion. We applied one controlling method to our system successfully.

The paper tries to connect the topics shown in Figure 1 in the following way: In
the first part we describe our system and after that we are going on to model it. This
yields an ordinary differential equation with a set of free model-parameters that are to
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be supposed to describe the ferroelectric material. The next step is to interprete these
parameters physically. After that we determine the free parameters and describe with
the help of them different ferroelectric materials. In the last part then we will show in

which way we can control the irregular and chaotic regions of the dielectric nonlinear
series—resonance circuit.

2. The dielectric nonlinear series—resonance circuit

2.1 Experimental Set—Up

The system we deal with is the dielectric nonlinear series—resonance circuit. Al-
though quite simple, it is well suited for investigating the dynamical large signal be-
haviour of a wide range of ferroelectric systems, such as single crystals, thin films and
ferroelectric liquid crystals[2], [3]. This circuit is built of a linear ajr coll and a ca-
pacitance filled with the ferroelectric material to be investigated, as shown in Figure
2.

The system as a whole is excited by a sinusoidal voltage. Because of the nonlineari-
ties of the capacitance the circuit is an experimental realization of a nonlinear oscillator.
The circuit has three external parameters to control its properties: Frequency and am-
plitude of the driving voltage and the temperature that fix the dielectric properties of
the capacitor.

For reasons of measurement two further components are attached to the reso-
nance circuit introduced above. Using the linear capacitance Cpand the linear resistor
Ry makes it is possible to record signals proportional to the dielectric displacement D
on the specimen and the current density j = dD/dt with time ¢ through the system
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Fig. 2. Block diagram of the exper-

respectively (see Figure 2). In order to be sure that H.Hmmlk all 251 mwwm_w& MMMNMM
Uext = Upcos{wt) drops at the dynamical system L(air coil) w:%_ o HA m:mﬁ_woés i
specimen) the unequality R, << 1/(wChm) << H\AQQEV holds. The Mm E.u: hown in
Figure 2 yields a representation of the three-dimensional vrm.mm mvwmm N M,ﬂr_m o ﬁ,&. !
D (generalized location), j (generalized E.oEm.sEBV and ¢ (time). Wi e | owmams
thermostatic or cyrostatic device (omitted in .m_mcﬂ.m 2) the temperature M he 9@19_
can be placed into the interesting mo:om_wno:o region that Qm@wzmm on the material.
The setup shown in Figure 2. makes it possible to measure:

Time-series for recording the complete phase-space,
Poincaré—sections as a stroboscopic view into the phase-space and

. oL . . . 0
Bifurcation—diagrams for recording the qualitative behaviour of the &S_moﬁﬂo no
ircuit 1 vl eter.
linear series-resonance circuit in the case of varving one external param

So we meet all experimental requirements to apply the methods of nonlinear dy-

narnmics.
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2.2 The model-equation

The dielectric nonlinear series-—resonance circuit can be described by a an ordinary
differential equation. This model-equation can be yielded by exploiting two properties
of the system:

(i) Its behaviour is macroscopic reproducible. That means that the external control
parameters mentioned in the section above really control the dynamics of the
system [2].

(ii) The dynamics has an underlying symmetry. If the driving voltage holds Uex: () =
—Uexs (t +T/2) with T as its period the dielectric displacement D either satis-
fies the same symmetry or there are two attractors A; and As and it is valid

Da, (t+T/2) = —=Da,(t) [2], [3].

From feature (i) it can be concluded that the ferroelectric capacitance can be de-
scribed by a macroscopic model. Therefore the ferroelectric capacitor can be replaced
by a substitute-network as it is shown in Figure 3 There Cy; represents the dielectric
nonlinear properties of the ferroelectric material, R, stands for the DC~conductivity
of the sample and R, for losses that are caused by the current running through the
capacitor. These losses may be due to motion of domain-walls or polarization reversal.
Furthermore, the electric field F¢, along the nonlinear capacity C,; must be homoge-
neous. Note that R; models the linear losses of the inductivity.

The substitute-network in Figure 3. can be analyzed with Kirchhoff’s laws. With
F as the Area of the sample, h as its width and E¢_, as the electric field over it the
result of this analysis is

R, : R,
+ th + 5 )+R|FD+ {1+ mlviwoa (D
(4 4

Ry -  LhdEc
ext — 1 o -——
Uexe = LF(L+ 1) D+ =1

)

Eq. (1) can be rewritten in a simplier form because R;/R, << 1 holds:

.. :
Uwe = LFD + LhdEc,,

Ry + RJFD+hEc, . &
Rt +[Rr + R, +hlc,, (2)
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! The work that is left is to model the electric field in an appropriate way so that
Eq. (1) models the circuit in a proper way. Because E¢,, models the electric field over

the capacitor this issue can be solved by regarding the properties of these materials.

2.3. Nonlinear nature of the electric field
The nonlinear properties of the series resonance circuit are determined by the non-
linear dielectric properties of the ferroelectric crystal.

The ferroelectric phase transition of second-order in these materials at the critical

temperature ©¢ can be described by the thermodynamic potential [1]

«@
mu9+%%+%&. (3)
« The basic assumption for the coefficients ay and a4 are according to Landau’s theory
az = a2(© — O¢) and oy = const> 0. The coefficient &, is a positive constant. Note
the following three cases are to be distinguished:

Paraelectric material (© > O¢): At temperatures above the phase transition the coef-
ficient ay is positive. The potential has only one minimum and the electric field
strength at the sample is calculated as

Ee, = ®|Q = me.*ﬁ&bw with a9 >0. TC
oD
Inserting relation (4) into equation (2) yields a generalized form of the so—called
Duffing equation [4].
. Lh oy : 3
w Uext = LFD + .NMMAQmu_.wQAb vb+fwh+mu_ mublTbﬁQmUxTQAb v . va
i

Ferroelectric material (© < ©¢) with small driving voltage: At temperatures below the
phase transition the coefficient oy is negative. The thermodynamic potential be-
comes double-well. The equilibrium value of the dielectric displacement

Dy = 4/ — (6)

may be derived from the equlibrium condition of the potential. Exciting the series—
resonance circuit with small amplitudes Uy, the dielectric displacement vibrates
around the equilibrium values Dy, of the crystal without an external field. There
is no polarization reversal.

Ferroelectric material (© < ©¢) with large driving voltage: If the amplitude of the dri-
& ving voltage is increased, polarization reversal in the ferroelectric material may
occur. This process is connected with the so-called dielectric hysteresis. The
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nonlinear relation between electric field strength E¢,, and dielectric displacement
D can be written as

Ec,, = oDy + Q»bw with a9 < 0. (7)

At high amplitudes of the driving voltage the oscillator ”feels” the whole potential
and therefore the relevant differential equation is obtained with expression (7) in
expression (2). The result is the generalized Duffing equation in a double—well
potential

. Lh . .
Uext = LFD + = —|asg| 4 304D*)D + [RL + Ry] FD — h|ao|D + hasD* . (8)
P

3. Results and discussion

The model-equation we derived from a macroscopic view to our system contains a
set of free parameters {R,, Rp, a2, as}. Determining these four parameters from exper-
imentally recorded time-series is the way to study the phase transition. We reached
our goal within three steps:

1 Periodic phase portraits of the series-resonance circuit have been recorded at
.different temperatures above and below the phase transition.

2 By a method we developed recently [5] a set of modelling parameters is determined
numerically from the recorded time-series.

3 The equations (5) and (8) are solved by numerical means. If for the set of values
of the modelling parameters can be observed a simulated phase portrait that is
very similar to the experimentally recorded one then this set of parameters will
be accepted as valid for describing the system.

To make the term ”very similar” more objective we applied two criteria that had to
be fullfilled for stating the success of our approximation:

(i} The experimental phase portrait and the simulated one must be bounded by the
same values for D and D.

(1) Both curves must have the same internal structure.

In practice that simulating method is quite effective. It can be carried out at a
personal computer and the time of calculating the model-parameters from the exper-
imental time-series is approximately equal to the time that is required to measure it
(including all IEEE-bus—transfers).

An example of the quality of the result we get is shown in Ilig. 4.We analyzed
time-series before and after a 1T-2T-bifurcation for betainarsenate [6] as ferroelectric
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Fig. 4. Comparison between measured and simulated time-series for betainarsenate before
(left) and after (right) a 1T-2T-bifurcation.
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Fig. 5. Effective thermodynamic potential of a betainarsenate—crystal (left) and a ferroelectric
liquid crystal (right).

material. Note, that the simulated and experimentally recorded time-series show the
same qualitative properties so that the result is accepted.

In the next step the coefficients ap and a4 may be added up according to Eq. (3).
This is done and shown in Figure 5. for two different materials: Betainearsenate m:.& a
ferroelectric liquid crystal. The thermodynamic potential G behaves for both Ewnﬂ._m.?
as expected in Sec. 2.3. Note, that the energy that is represented by the Uon‘mssﬁ of the
ferroelectric liquid crystal is about 10 times greater than the those of betainarsenate.

We want to stress that it is not necessary to restrict to a linear ansatz of R, and
R, as it was done for Eq. (1). Higher terms may be used, but then it must obeyed that
the symmetry-condition (ii) mentioned in Sec. 2.2. holds for that ansatz.

4. Controlling the dielectric nonlinear series-resonance circuit

4.1 Controlling method

We want to use the method proposed by Ott, Grebogy and Yorke (OGY) [7]. The
advantages of this method are that all required parameters of control can be got only
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by measuring of the system without using any kind of model and only very small
perturbations are necessary for reaching a successful control.

This method uses the specific properties of the unstable periodic saddle orbits em-
bedded in the chaotic attractor. The basic idea of the control method is to change a
parameter (which can be varied from outside of the system) in a small range and to
force the system to the stable direction of one of these saddle points.

The value of this perturbation should be selected in such way, that the system
approaches that orbit in the next time if it is found next of this unstable periodic orbit.
The system meets the requirements, if it depends on a parameter, which is variable in a
small interval and we have an iterative map (Poincaré-section) with unstable periodic
orbits. The formula introduced by OGY is the following equation:

da= - F o (9)
Ju-®
Here the vector £, is the unstable contravariant basis vector and it gives the direction
of the unstable manifold of the fixed point. The parameter ), is the corresponding
eigenvalue, the vector @ comes from the linearisation of the Poincaré-map and 8¢, is
the difference between the fixed point mt F and the momentary system state m.w..
The dielectric nonlinear series-resonance circuit has a 2-dimensional Poincaré-section
{D, 5}, so Eq. (9) can be rewritten as

This equation shows, that the formula confines to two multiplications and two addi-
tions/subtractions, if the parameters are adequate summarized. We chose the driving
amplitude of the series resonance circuit ds an external parameter of perturbation.

In practice we apply Eq. (10) to the dielectric nonlinear series—resonance circuit by
an analog computer that we designed for that purpose. The block-diagram of this
analog-computer is shown in Figure 6.

One A/D-converter is used for recording the Poincaré-section. The controlling
computer, that is in fact a 386-PC, determines then the fixed point £# and the values
of k1, k2 and k3. The other A/D-converter then converts the numerical values of
these parameters into small voltages. Two multipliers and one adder perform then
the calculation of Eq. (10). This process is performed continously, however, the value
of the control-parameter is only required in the very moment of obtaining a point in
the Poincaré-section. That is why we need a sample-and-hold-unit, triggered by the
driving generator.

We require a very small parameter for the perturbation. Unfortunately, often it is
the case that this parameter is not small enough. Especially, this case will occur if the
state of the system is far from the fixed point Zr. Therefore a window—discriminator
is necessary. Its output controls the amplifier in order to modulate the driving voltage
of the dielectric nonlinear series—resonance circuit. No modulation will take place if the
perturbation is set to zero or too big.
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Fig. 6. Block-diagramm of the analogue-computer that controls the dielectric nonlinear se-
ries-resonance circuit. |
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Fig. 7.Results of a control-process. Note, that the control is switched on after 750 steps.

4.2 Results of controlling the dielectric nonlinear series—resonance circuit

The results of the control are shown in Figure 7. .Hrmwm. are shown the control
perturbation in percent of driving amplitude m,:a .&m dielectric m_mﬁ_mn.mamwﬁ w\mm the
control steps. In the left hand side the control is switched off and then is switc #.w _o:.
One can see, that the perturbation s smaller than 1% for a m:oommmm.i Q.:Sm contro .~

In the first time after the control is switched o:_.:ﬂm. vo?:.lum:o: is large ‘, ‘p he
system is forced to a stable orbit. A smaller perturbation is required to hold the system
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in a periodic window, if this orbit is reached.
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