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In this work the lifetimes of the excited states of the exotic atoms are calculated
using the Bethe-Salpeter equation. The level breadth is calculated to the first or-
der, by considering innteractions of higher order than the ladder-type interaction.
The effects of spin, nuclear interactions and the effect of the outer electrons in a
mesic atom are neglected. The results are comparable with the experimental data.

1. Introduction

An exotic atom consists of a normal atom with one of its electrons replaced by a
negatively charged particle, e.g. mesons or baryons. The formation of such atoms takes
place when a negative meson, for example, is stopped in matter. First it looses energy by
ionization, then it slows down by collisions with electrons of comparable velocities until
it is captured by an atom into a higher Bohr orbit, from which it is rapidly deexcited
to lower states, first by Auger transitions, until it reaches lower orbits when radiative
transitions become predominant. The cascade of the particle from these higher levels
can be calculated using the transition probabilities of the radiative and Auger processes
[1,2]. For baryons, n-meson and K-meson the strong interactions will play a dominant
role in the cascade process especially for the lower states.

The features common to all exotic atoms may be summarized as follows: In com-
parison with the electron all the particles captured are heavier in mass. Hence, the
particles are much closer to the nucleus since the radius of the Bohr orbit is inversely
proportional to the mass of the particle. Therefore, these heavy particles may be used
to test the nuclear properties since the nuclear interactions will be more predominant.
Also, the particle orbits with principal quantum number n < \/my/m, (with mj the
mass of heavy particle and m, the electron mass) lie within the innermost electron
orbit. Therefore, screeninng by the electron cloud is negligible and the problem may
be treated as a two-body problem as a hydrogen-like atom. The main features of the
energy levels for these atoms can be obtained by solving the Schrodinger equation for
the particle-nucleus system assuming only the electromagnetic interaction.

For spin 1/2 particles the energy levels are given by the solution of the Dirac equation
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which is of the same form as the Klein-Gordon equation with j replacing {. Modifications
to such formulas may be due to the following effects: finite size of nucleus, vacuum
polarization, nuclear polarization (dispersion effect), electron screening and fine and
hyperfine structures.

In a previous work [3] the level breadth of the excited states of the exotic atoms
were calculated using a perturbative approach based upon the Green’s function, by
considering interactions of higher order than the ladder type interaction. The spin of
the photon was neglected in such calculations. In the present work we elaborate on the
previous work by taking the spin of photon into account. In the next section we shall

outline the theory and in section 3 the results of the calculation are discussed.

2. Perturbation theory

The Bethe-Salpeter equation (BSE) has been applied previously to calculate the fine
structure, Lamb split and the hyperfine structure of the hydrogen and exotic atoms. In
this section we shall develop a method for calculating the level shift using a perturbation
expansion of the Bethe-Salpeter equation. We shall start by taking a simple model in
which we assume that a and b are two non-identical scalar particles exchanging scalar
photons. The BSE for such system then reads :
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where A, and Ay are usual Feynman Green’s functions for the scalar particles with

masses m, and m,, respectively. The kernel I(p,p’, P) represents the sum over all:

possible Feynman diagrams and o represents all quantum numbers which define the
state of the system. Equation (2) is very difficult to solve in the general case and most
of the calculations were made using only the flirst term, i.e. the ladder approximation.
Proceeding as in Ref. 3! we obtain an expresiion to the first order for the energy shifts

AE®) = I%o VO (21, 29) I (21, 22; 27, 25) U0 (2], 25)dz1dzadz)dz), Amv_

Now, if we are interested in the level shift of the excited states of the two vwﬁ.@m
system we may take I’ as the self energy T of the whole system, since this allows for
higher order processes, hence ‘
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Using known techniques for calculating such integral we get after the renormalization
procedure

I =in? (log |p| — i), p<0 (5)

HI.

lsee Ref. 3 for notations and detailed proof
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where
_ \Sm\ — gﬁm 6
=M ©)

My = mq +my — By and B, is the binding energy of the state a.

This gives an energy shift which should be added to the energy shift due to finite
size effects of the nucleus, vacuum polarization, etc. as was discussed previously.The
imaginary part is the level width calculated to the first order which is related to the
lifetime of the excited state. Thus, the probability of decay of the state o to the state
o' would be given by
Paar 10g |pac| Q\v

(I~ pacr)
Results of the calculation using the above equation were reported in a previous work
[3]. In the present work, the method of calculation of the energy shift is extended to
include the spin of the photon. In this case the Klein-Gordon equation for the spin zero
particle of mass M becomes
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Hence, the integral given by equation(4) becomes
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where 6,, = 4 comes from the A, A, term and represents the possibility of simultaneous
emission and absorption of the same virtual quantum. Following the same procedure
as before the above integral gives the probability of the decay when spin of the photon
1s taken into account. Hence,

ImAE®M « 272 P2, T - whlmw log _n; ., p<0 (10)
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Equation {5) has been applied previously [3] to calculate the level width for the hydrogen
and exotic atoms. In the present work we use equation(10) which includes the spin of
the photon. The results are discussed in the next section.

3. Results and discussion

The results obtained in the previous section have been applied to calculate the
lifetimes of the excited states of the following sestems: (e~,p), (#~,p), {7~ ,p), {¢7,e¥),
(@=, p*) and (p~, ut).
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Transition Spin 0 photon | Spin 1 photon | (u~,p) | (=" ,p)
n—on-—1 (e7,p), 1078 | (e~,p), 108 | 1071% | 10~10s
21 0.308 0.15 0.112 0.089

0.21* 0.086* | 0.067*

32 1.52 0.74 0.537 0.426
43 4.12 2.01 1.43 1.13
554 8.58 4.19 2.95 2.33

6—5 15.3 - 7.49 5.23 4.1
mean cascade time 2.5 {12]

* Dipole approximation .

Table 1. The lifetimes of the excited states of the (x~,p) system.

3.1 The hydrogen atom

The hydrogen atom is the fundamental two-body system and perhaps the most inter-
esting problem in physics. The cascade of the electorn from higher excited states to
the lower states can be calculated mainly by the dipole aproximation for the transition
probability [1]. Relativistic corrections using the Dirac equation were calculated before
[4] and the results agree with nonrelativistic calculation. Our aim here is to extend the
calculation to include recoil corrections in a simple way where the spin of the proton
and electron are neglected. The results are shown in table 1 in comparison with the
previous calculations [3].

3.2. (x~,p) systems

For the p-meson the treatment is the same as for the hydrogen atom, but for the m-
meson (spin 0 in this case) nuclear capture is expected to predominate for Z > 2. The
experimental features of the cascade processes are available at the moment, but there
is marked disagreement at low atomic numbers.

Cascade calculations for muonic atoms have been performed by Eisenberg and
Kessler [5] and Hiifner [6] assuming a distribution over ! subtates for an initial n (n = 14
in this case). For pion the situation is different as strong interactions takes place be-
tween pions and the nucleus in addition to the electromagnetic interactions.

For the K-mesons the situation is different as the nuclear interaction is stronger
in this case which creates more complicated final states as a consequence of nuclear
absorption. The cascade times of 7=, K~ and £~ in liquid hydrogen have been measured
with cascade times in the range (0 — 4) x 1071? 5 [7-9]. These results are consistent
with the prediction of Day, Snow and Sucher [10] and the calculations of Leon and
Bethe [11] that Stark effect mixing leads to rapid capture from states of high n value.
However, in the case of hydrogen gas the cascade time is noticeably longer, 2.5 x 10~1%
[12]. This means that radiative processes are likely to be predominant in the gaseous
case. Applying our model to the (¢~ ,p) and (7~ ,p) systems we obtained good results
in comparison with the previous work as is shown in table 1.
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3.3. Other exotic atoms

In this section we study the quasi-stable positronium, (u~, %) and (r~, %) systems.
Using our model, we calculated the lifetime of the first excited state for positronium
and found it to be 0.452 x 10785 to be compared with the value 0.32 x 10~8s which is
obtained using the dipole approximation. Also, the lifetime of a similar system (u=, u¥)
is 0.218 x 10~1%. Here, we give also the lifetime of the first excited state of the (x~, 7t)
atom. The result is 0.192 x 10~% which is again comparable to the value obtained
using the dipole approximation: 0.132 x 10~1% (Notice the value calculated previously
[3] for spin zero photons is 0.124 x 10~ %).

To conclude, the lifetimes of the excited states of exotic atoms were calculated using
a perturbative approach with the inclusion of the spin of the photon. The results
are much better than those obtained previously [3] where the spin of the photon was
ignored.

We believe that the inclusion of the spin of the two interacting particles will compli-
cate the problem and will not affect the results significantly. The perturbation theory
for the Bethe-Salpeter equation for a bound state comprised of two spin 1/2 particles
has been developed in Refs. 13 and 14 where different contributions to the level shift
were presented. Some recent calculations for spin 0 - spin 1/2 and spin 0 - spin 0
particles were made also by Own [15] and Halpern [16] for the level shift.
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