-ty

acta physica slovaca vol. 46 No. 5, 623 — 632 October 1996

EVOLUTION OF AN ARRAY OF ELEMENTS WITH LOGISTIC
TRANSITION PROBABILITY

Vladimir gm.mmu.u_\rﬁ. Anton Surda¥
t Institute of Mathematics, Slovak Academy of Sciences, Stefinikova 38, SK-81 473
Bratislava, Slovakia
i Department of Theoretical Physics, University Palacky, T¥. Svoboby, Olomouc,
Czech Republik,
1 Institute of Physics, Slovak Academy of Sciences, Diibravsks 9, SK-842 28
Bratislava, Slovakia

Received 29 July 1996 , accepted 5 September 1996

The paper addresses the problem how the state of an array of elements changes if
the transition probabilities of its elements is chosen in the form of a logistic map.
This problem leads to a special type of a discrete-time Markov chain which we
simulated numerically for the different transition probabilities and the number of
elements in the array. We show that the time evolution of the array exhibits a
wide scale of behaviour depending on the value of the total number of its elements
and on the logistic constant a. We point out that this problem can be applied
for description of a spin system with a certain type of mean field and of the
multispecies ecosystems with an internal noise.

1. Introduction

In the last decade there has been a great deal of interest in studies of dynamic systems
in presence of noise and fluctuation. The majority of these studies is devoted to the
investigation of the effect of noise and fluctuations in a 1D quadratic maps described by
a logistic map. For review see, e.g. [1] and [2]. In these studies there were found similar
features of the effect of additive and parametric noise in these dynamical systems, a
fact which has a great importance and a wide range of applications in physics and in
theoretical biology. Another type of investigation regards the behaviour of a network
of chaotic elements coupled with local or global maps between the element variables of
the form

N
. . £ .
zara(i) = (1= €)F(@a () + = 3 flzali)),
F=1
where z denotes an element variable, f{z) is a certain function of z, n is the number
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Abbreviations

MCh Markov chain
SA stochastical array

Nomenclature

L total number of elements in the array
S number of elements in the state sg

Z number of elements in the state s, CG center of gravity of a single trajectory
p transition probability of changing the
state of an element from s to s,

LJ length of jump in a single trajectory

transition probability of changing the
state of an element from s; to so

to]

a logistic constant

of a discrete time step, and the elements are indexed by i. Kanenko chose for the
function f(z) the logistic map as a model of a system of coupled chaotic elements with
a variable interaction [3]. He showed the clustering and coding of attractors in them
which are organized so that their change exhibits bifurcation-like phenomena similar to
attractors of spin-glasses. His model represents an extension of coupled map lattices
(CML) serving as prototypes for spatiotemporal chaos [4].' In all these models their
evolution is described by a certain type of interactions of the element variables.

The question which we address in this paper is the description of time evolution of
an 1D array of elements which can occur only in two possible states s and s1. These
states are changing in the discrete time with the transition probability given in the form
of a logistic map. Defining r = S/ L, where L and S is the total number of elements in
the array and the total number of elements occurring in the state sg, respectively, we
assume that the transition probability of an element to change its state from sq to s
in a time step is

@“Qﬂﬁ—'ﬁv_ A..:

where a is the logistic constant. Thus, we linked the transition probability of an element
state with the number of array elements occurring in a the state s5. We show the time
evolution of such a 1D array (SA for short) is a stochastic process, described by a:

Markov chain, which exhibits a rich behaviour depending on the value of the logistic

constant a and total number of elements L. ]
Since we do not take into account the memory, the stochastic process of such system

is to a discrete-time Markov chain (MCh) [6] determined by the transition probability

between next time steps. In what follows we determine analytically this transition
probability and present the results of a numerical simulation of the MCh for different
value of a and L in the form of single trajectories and histograms. Finally, we discuss.
the potential applicability of these results in physics and mathematical biology.

2. The Markov chain

We consider an array of L elements each of which can occur in one of two possible
states sp and s;. Their states change stochastically in discrete time. If S is the number
of elements occurring in the state sq (so — elements) and Z is the number of those
occurring in the state s; (s, - elements) we have L = S+ Z. We assume that the
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transition probability of changing the state of an element from sq to s; in a time step’
depends on the total number of so-elements in the array via the logical map (1). If the
transition probability from sy to s; is denoted by p and from s; to sg by ¢, then we
assume further that p+ ¢ = 1.

The stochastic variable, which describes the time evolution of our system, is S. The
considered stochastic evolution of the array represents a Markov chain determined in a
discrete time and characterized by the transition probability P(S;|S;;1) where S; is the
number of sp-elements in the time ¢; and S;4, is that in the time #;,;. This transition
probability consists of a “kinetic” and a “dynamic” parts. The kinetic part is given by
the number of ways in which our array with S; s¢-elements in time #; passes over to
Sit1 so-elements in time ¢;;;. Using combinatorial arguments we get for the partial
probability of the transition Py(S;|S;41) from S; to Siy; on the path with (S; — )
sop — s1 transitions and (Sj4; — ) s1 — sp transitions the following expression

Si 15—t { L—5i L~S;i=Sig1+l, Sig1-1
1Q. — — i 1— i—Siq1 i1
RIS = () (1= p)'p m B Nv (1-g) g
Summing over all possible paths, we get for the total transition probability

min(5;,5:41)

P(Si|Si+1) = >

I=max(0,5;+Si41~L)

P(SilSi1)- (2)

The formula (2) for the transition probability is quite general, therefore, we have to
specify in it the transition probabilities p and ¢. As said in Introduction, we take for
the probability p the logistic map in the form (1). This is why the logistic map has very
rich dynamics [5] depending on the values of the logistic constant a. If 3 > a > 1 the
fixed point at £ = 1 — 1/a is an attractor. At a = 3 the logistic map bifurcates and as
a increases the successive bifurcations give rise to a cascade of period doublings. In the
range 4 > a > 3.570 the map exhibits a chaotic behaviour. The choice for this transition
probability p was motivated mainly by the fact that this map is mathematically well
understood in the whole range of the logistic constant a. Since the Markov chain which
we consider is mathematically rather complicated we will, in what follows, make only its
numerical simulation for the relevant values of the total number of the array elements
L and logical constant a.

3. Computer simulation of the Markov chain

For the description of the evolution of SA by means of MCh we need two input pa-
rameters: (i) the total number of elements L and (ii) the value of logistic constant
a. We determine some relevant single trajectories of our MCh and the corresponding
histograms for a = 2.95,3.1 and 3.5 as well as for L = 200,400 and 600. The single
trajectory of MCh over 500 time steps after the initial transient phase for a = 2.95 and
L = 200 is shown in Fig.1. Here the full line depicts the value of the attractor of the
corresponding logistic map. The value of S,, /L for odd and even time steps are denoted
by (+) and (), respectively. The stars and crosses are connected separately by lines as
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0.9 7 a=2.95
L=200
Sn/L |

Fig. 1. Single trajectory over
] 500 time steps for a = 2.95 and
L = 200. The solid line paral-
lel to the time axes denotes the
) 100 200 300 400 W_uo value of the fixed point for the
n corresponding logistic map.

0.3

E Fig. 2. Single trajectory over
500 time steps for a = 3.1 and
_ _ : : i L = 200. The solid lines par-
0 100 200 300 400 500 allel to the time axes represent
n the periodic points.

0.3

a guide for the eye. Fig. 1 shows that at a = 2.95 stars and crosses are placed at both
sides of the full line. Despite the fact that a is less than the critical value for bifurcation
of the logistic map, the values of S, /L are not distributed in a totally random way,
but they form small areas where the crosses and stars are separated, i.e. where MCh
exhibits a bifurcation-like behaviour. This fact has been observed also by many other
authors when studying dynamical systems in presence of noise, see, e.g. [7]. The effect
of the number of elements in SA on the single trajectory just above the bifurcation is

.
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Fig. 3. Single trajectory over

0.3 3
0 100 200 300 400 500 500 time steps for a = 3.1 and
n L = 400.
09 7 a=3.1
L=600
Sn/L
0.7
0.5
0.3 _ Fig. 4. Single trajectory over

0 100 200 300 400 m_uo 500 time steps for a = 3.1 and

n L = 600.

shown in Figs 2, 3, 4 which clearly indicates that the larger is L the less is the disper-
sion of the value of S;/L around the periodic points of corresponding logistic map. For
the statistical analysis of our MCh we take the following statistical data as the most
relevant for the evaluation of the behaviour SA:

(1) the value of the random variable S;

(i) the “center of gravity” (CG) of S defined as (S; — S;;;)/2 and

(1i1) the product of differences of neighbouring values of S related to the absolute value
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Fig. 5. Histograms of some rele-
vant statistical quantities. The
lines are guide for the eye. The
histogram of S, CG and LJ is
depicted by curves a,b, c, re-
spectively. The x-coordinate de-
notes the values of S, SG, and
LJ. The positive value of LJ has
the jump in the “right” direc-
tion otherwise it has negative
==  value. The histograms here are
0.2 0.4 0.6 0.8 1.0 fora =2.95 and L = 200.

0.8 A

0.4 A

. 1 » Fig. 6. Histograms of §, CG and
0.4 0.6 0.8 1.0 LJ fora=3.5and L = 200.

0.0 :
-02 00 0.2

of one of them —(S,11 — S,)(Sn — Sn_1)/|5n — n—1| , which represents the length of
Jumps (LJ) with the sign denoting if the jump is in the “right” direction i.e. opposite
to the direction of the jump in the previous step. The most frequent events in the
evolution of the MCh is that the successive Jjumps have opposite direction.

All these statistical quantities are displayed in figures in the form of normed his-
tograms in which any value of a certain statistical quantity is related to its maximum
value occurring in a single trajectory. These histograms are shown for [ = 200 and
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s v = Fig. 7 Histograms of 5§, CG and
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 LJfora=3.1and L = 200.

0.8 -

0.4 A

0.0 " ; ” . = Fig. 8. Histograms of S, CG and
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 LJfora=3.1and L = 400.

a = 2.5 and 2.95 in Figs 6 and 5, respectively. They show that the probability distri-
bution given by the histogram of S (denoted as histogram a) is symmetric but slightly
shifted from the solid line and the histogram of CG (histogram b) has a slightly asym-
metrical form which is not fully smooth. The histogram (c) for L] have a complex
structure. Both histograms (b) and (c) are broader for a = 3.1 than for 2.5. The effect
of the number of elements L on the form of histograms is demonstrated in Figs 7, 8, 9
which are slightly above the bifurcation point of the logistic map. For small number of
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1.0 LI fora = 3.1 and L = 600.

Fig. 10. Histogram of S, CG
and LJ for a = 3.56 and [ =
200. The dotted lines paral-
lel to the abscises denote the
difference between the periodic
1.0 points.

0.6 0.8

elements (L = 200) the values of the odd ste

lines and thom 3 Al il bs are scattered around one of the solid

. scattered about the ot} i
_:ﬁm:_ﬁ . 5 1er one. After relatively short
al they exchange their positions. The larger values of elements [ the :wvﬂ.nosaa

are histogr .

values o%ﬁmm,ﬂmom HMM_M ﬁrm Ygie longer stuck to one of the solid lines. The maximum

is approximately nmmi mao S appear between the element lines. The histogram CG

and LJ are ered around the center of the soljd lines. Both histograms of S
asymmetric and broader at the lower side. For [, — 200 the left maximum

== Fig. 9. Histograms of S » CG and
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has a form of a shoulder rather than of a peak There is a pronounced tail to negative
values in the histogram of LJ which reflects the presence of numerous regions where
crosses and stars interchange their positions in the single trajectory. With increasing
number of L all the histograms become narrower. As an example for the simulation of
the behaviour of SA nearer to the chaotic regime of logical map we have taken a = 3.5.
Fig. 10 shows that the histograms (a) and (b) lay farther from the two solid lines than
those for a = 3.1. For a = 3.5 the logistic map has four periodic points and instead of
four peaks in histogram CG we have only one rather narrow peak with long tail for the
small values of LJ.

4, Conclusions and possible applications

From what has been said so far it follows that

(i) for large values of L the histograms of CG and LJ become narrower and the peaks
in the neighbourhood of the full lines become sharper;

(ii) the histograms for LJ are sharper and smoother;

(iii) single trajectory shows a bifurcation-like behaviour slightly before the bifurcation
point;

(iv) increase of the value of a for constant L causes broadening of all the histograms.
Since the time evolution of considered SA described by the MCh is rather general it
can simulate a large class of complex systems in physics, biology and in general system
theory. Let us briefly mention only two typical examples, namely the linear Ising chain
with a certain type of mean field and a population with noise. The linear chain of'spins
consists of an array of spins having two different directions [8]. If the magnetic field
produced by the spins is a linear function of the spin direction and the probability of
change of the spin state is a quadratic function of the mean field then such a linear spin
array can be described by our MCh. In the theoretical biology the simplest model for
the population dynamics is described by the logistic equation [9]. This model simulates
the behaviour of single population having discrete non-overlapping generation. However
such a population is generally exposed to fluctuations, environmental noise and other
change events. The common way to investigate such a population is to take some logistic
equation for its description and then to add to it some sorts of noise [10]. We find it
more appropriate if one considers a priori a stochastical evolution of a population in
the form of our Markov chain, where S; is the magnitude of population in the time
t; and then determines under which condition it can be approximated by the logistic
equation. As we have demonstrated above our SA described by MCh approaches to a
deterministic logistic map when L is very large and it exhibits more stochasticity when
L is small. This corresponds also to the common feeling that a small population is more
sensitive for stochastical effects than a larger one.

The considered MCh could be the adequate model for describing the real population
dynamics of multispecies ecosystems. The pure single species ecosystems , described
by the deterministic logistic equation, occur in nature only rarely. If we consider real-
istic multispecies ecosystems we necessarily have to take into account the interspecies
interaction and the environmental noise. This can be done by considering an array of el-
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ements obeying the logistic equation and simulating the possible interspecies interaction
and environmental noise.

These two examples demonstrate only the fact that the considered SA may have
several possible applications in different areas of science. The simulation of a multi-
species ecosystem in the whole range of its realistic parameters will be the subject of a
subsequent paper.
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