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We calculated the zero-contingent entropy for the position of electron in H-atom
as a function of its quantum numbers and compared it with the corresponding
value of the Shannon entropy. The values of zero-contingent entropy of quan-
tum states of H-atom correlate well with the corresponding values of Shannon’s
entropy. This points out that, besides the Shannon entropy, the zero-contingent
entropy represents an appropriate, and mathematically rather simple, measure of
the spreading out of the wave functions in H-atom.

1. Introduction

There has been a considerable recent interest in determining various measures for
uncertainty of the observables (e.g. dispersion, entropy, etc.) for certain quantum-
systems in order to find different types of the uncertainty relations [1,2,3]. In accordance
with the present understanding the quantum system is described by a complex function
¥(z,t) which is linked with the function of finding a particle at position z and time
t by the equation P(z,t) = |¢(z,)|?. As is well-known to any quantum observable a
random variable can be ascribed which is generally given by the probabilistic scheme
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In the first, second and third row in this scheme there are quantum states, their prob-
abilities and the corresponding eigenvalues, respectively. In the theory of probability
there are essentially two types of measures of the uncertainty of a random variable [4].

¢ the moment measures of uncertainty of random variables given by means of the
scatter of its values determined generally by its central statistical moments

¢ the probabilistic or entropic measures of uncertainty containing in their expressions
only elements of the probability distribution of a random variable and determining
the sharpness of its probability distribution.
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e H() is the so-called differential entropy

If Z is a discrete random variable given by probabilistic scheme : wher
N N N 2O = - [ p(a)logp(z) de ®)
P | P(er) [ Plza) | [ Plaa) 4
x z1 Z2 ] Zn - and H®) represents the diverging term

then its k — th statistical moment is H = lim logts @)

-0

‘m*) = M:u?:. — mo)* P(z;),

i=1

' It is interesting that besides the Shannon entropy there exists a set of non-standard
* entropies which serve as certain entropic measures of uncertainty of random variables

where " as well ( for a review see [12]). We mention only the most important of them [7]

n
my = Ma..w?:.v ¢ The f-entropy
i=1

If Z. is a continuous random variable with the probability density function o(z), armn :
its k-th central statistical moment is ‘ s

m*) = \8? — zo)*p(z)dz,

acﬂ\ zp(z)dz.

-0

Hp = P(w:)[1 - P(z:)°1/° + 3" P(a;)[1 - P(z})),
i=1 i=1
where f is a parameter, § € (0, 1).

* The contingent entropy
where

Ho= M_UEH..VZ: — P(2)]* + Y P(e)[1 — P(z;)]

i=1

Especially, the dispersion, representing the second central moment

where o € ,,.ﬁ, 2) is a parameter.
In the limiting case, if 8 — 0, B-entropy, Hp, gets the form

g= \louo? - 29)?p(z)dz,

is often used as a measure for the accuracy of a measurement. The moment measures
of uncertainty also entered in the standard formulation of Heisenberg-type nﬁm@,g&.ﬁ&
relations in quantum physics [5]. :

The most important entropic measures of uncertainty of a random variable, charac-
terized by the probability distribution function P(z), is given by the general integral

(6]

Ho() = Hp() = 3 P(a:)[1 - P(z)] (a)

and is called the zero-contingent entropy.

All these measures have similar properties as the Shannon entropy but they are
.mo.nﬁm:% more simple to handle mathematically ( they have no logarithm in their def-
Initions). The aim of this article is to show that one of these non-standard entropic
Measures, the zero-contingent entropy, can be used as a possible measure of uncertainty
of 2 quantum observable. The integrals determining this entropy can be in principle
Calculated analytically though by a lengthy procedure. This is not generally the case
for the Shannon entropy. In what follows we calculate the zero-contingent entropy for
the Position of electron which occurs in various quantum states in H-atom. The values
w:r_m entropy correlate with the values of the Shannon entropy for the correspond-
188 quantum states of H-atom. Therefore, the zero-contingent entropy represents an
Eﬁnsmﬁ?m measure for uncertainty of a quantum observable.

H= l\w?iomwﬁav

and is called Shannon entropy. If # is a discrete random variable _whid
takes the values zi,i = 1,2,...,n, with the Eovmvm:a%" W .
{P(21), P(z2),..., P(za)}, Y P(z:i)=1; P(x:)20,i=1,2, ... ,n,, then its Sha®
non entropy is given by the formula o

H(P)=H(z)=- PlogP;

The entropy of the continuous random variable # , characterized by the function o:
probability density p(z) has the form

H(i)=HY 4 g™
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Fig. 1. Zero-contingent entropies of quantum states of H-aton (broad scale)

2. Zero-contingent entropy for position in H-atom

The simplest quantal system of two bodies with the Coulomb interaction represents the
hydrogen atom. If E is energy of the electron-proton system then the wave function
¥(r, 9, ) of electron is a solution of the Schrédinger equation [8]

h? e?

lﬁblﬂ. ﬁAﬁ%,ﬁv“m‘SAﬁ%_ﬁv . Amv
Carrying out the separation of angular and radial variables the eigensolutions of (5) for
eigenenergies F, are ‘
: Pnaa(r,9,0) = xn Yi(9,9) )
where xn, areradial functions and Y are the spherical harmonics. n,[ and A is radial
(principal), azimuthal and magnetic quantum number, respectively. The probability of
finding electron within the volume element, dr ,is dP = ¢3*dr and the corresponding
probability density

dP
ETJ ,%“ ﬁv =0 = ‘.\\@* = _\.bz;ﬁﬁ ‘%M ﬁv_w

dr
The distribution p(r,?, ¢) can be experimentally determined with the aid of electron
scattering experiments [13]. By means of these experiments one can find the cross sec-
tion and the rates of collisional ionization of H-atom in its different quantum states.The
spreading of wave function of H-atom, whose measure is the zero-contingent entropy, is
functionally linked with the above-mentioned measurable quantities.
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Fig. 2. Zero-contingent entropies of quantum states of H-atom ( fine scale).

The zero-contingent entropy for the continuous random variable Z with the density
probability function, p(z), turns out to be

o

oo
Ho(%.)=S = \ p(z)[1 — p(z)}de = Hl\ (p(z))*dz. %)
— 00 —00
We next calculate the zero-contingent entropy for the quantum states of hydrogen atom
in that we insert the corresponding probability density function of electron in H-atom
in the formula for zero-contingent (Eq.(b))

[o ] 2w 27
.m.wlv, =1- 4\. 1\ .\ _ﬁw—N»T‘,q %« SV_A&Q.TJ %, ﬁv
0 0 0

The zero-contingent entropy, Sna, gives the uncertainty of the position of electron in
H-atom and its magnitude represents also a measure of spreading out of the considered
wave function in H-atom. We have calculated the zero-contingent position entropies
of H-atom as a function of its quantum numbers ( The calculation were performed
using Mathematica [11]). The numerical values of the zero-contingent entropy of H-
atom are given in Table 1 and graphically represented in Fig.1 and 2. We see that
the S5 represents a monotonically increasing function of principal number n having
minimal value for n = 1. This corresponds with the behaviour of other measures for
uncertainty especially that of the Shannon entropies {9,10}. For fixed n and different
{ and A we found also correlated values of zero-contingent entropy with the Shannon
entropies presented in [10]. The great disadvantage of the zero-contingent entropy is




620 R Charvot, V Majernik

that it gets-values rather close to 1 which causes that the individual values differ only
little from each other and, therefore, the correspondent integrals must be calculated
with high accuracy.

The comparison of the zero-contingent entropies and Shannon’s entropies for H-atom
shows that the Shannon’s entropies are much more dispersed than the zero-contingent
entropies. The larger sensitivity of Shannon’s entropy on the share of wave function
can be explained by the occurrence of logarithm in its definition which is much more
sensitive for the share of the wave function than power function occurring in the zero-
contingent entropy.

n|l]|X Snixn nilfA Snix n|l]2A Snix
110]0]096021126 || 4 [ 1 |1 | 0.99098411 512 1]0.99999486
210]0]0.99922288 1[4 (210 0.99997097 || 5 | 2 | 2 | 0.99999486
21110/099860118 (4 |21 0.99998065 || 5 { 3 | 0 | 0.99999095
2 11]1]0999067451( 412 |2 0.99998065 || 5 | 3 | 1 [ 0.99900384
3101010.999923251] 4310 0.99996159 }| 5 | 3 ] 2 | 0.99999437
31110]0999873361 4 31 0.99997386 || 5 | 3 | 3 | 0.99999374
3]1111/(099991557 (432 0.99997609 || 5 | 4 | 0 | 0.99998811
31210[10.99982731 |4 (313 0.99997344 || 5 | 4 [ 1 [ 0.99999176
312[11]0.99988487 |[5 [0 [ 0 | 0.99999590 514 210.99999263
312121099988487 [ 5110 0.99999343 1| 5 | 4 | 3 | 0.99999266
41010]0.99998524 | 511 1 | 0.99999562 5141410.99999143
4110099997616 || 51210 | 0.99999229

3. Conclusion

From what has been said so far it follows that
(1) The uncertainty in the electron position in H-atom can be determined by different

entropic measures. Among these entropic measures the zero-contingent entropy seems,

especially suitable for the calculation of this position uncertainty.

(ii) The values of zero-contingent entropy for localization of electron of quantum states
in H-atom correlate with the corresponding values of the Shannon entropies.

(1ii) There is a disadvantage for the use of zero-contingent entropy in that it yields very
small differences between the different quantum states. .
Summing up we can conclude that the zero-contingent entropy can be considered as an
alternative entropic measure of uncertainty besides the Shannon entropy.

References

{1] I Bialycki-Birula, J. Mycielski: Commun. Math. Phys. 44 (1975) 129
[2] D. Deutsch: Phys. Rev. Lett. 50 (1983) 631
(3] V. Majernik, T. Opatrny: J. Phys. A: Math. Gen. 29 (1996) 2187

[4] W. Feller: An Introduction to Probability Theory and its Applications. Vol. 1. (Wi-
ley,New York 1968).

Zero-contingent entropy of quantum states of a hydrogen atom 621

(5] J.B.M. Uffink, J. Hilgevoord: Found. Phys. 15 (1985) 925

[6] A.N. Kolmogoroff: Theorie der Nachrichtungsubertragung (D.Verlag d. Wiss.,Berlin,
1957)

{7] V. Majernik, B. Mamojka: Phys. Scr. 44 (1991) 412

[8] E. Merzbacher: Quantum Mechanics 7th edn (New Your : Wiley, 1967)

[9] V. Majernik: Acta Phys. Slovaca 25 (1995) 75

{10] R.J. Yanes, W. van Assche, J.D. Dehese: Phys. Rev. A50 (1994) 3065

[11] S. Wolfram: Mathematica, a System for Doing Mathematics by Computer (Redwood
City: Addison-Wesley, 1991)

{12] J. Vajda: Information theory and statistical decisions (in Czech, Bratislava: Alfa, 1982)

{13] L. Vriens, A.H.M. Smeets: Phys. Rev. A22 (1980) 940



