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This study is devoted to a detailed numerical testing of the analytical results
obtained recently for the M;-scaling of the parameters of the Bose-Einstein cor-
relation functions. Numerical testing of analytical results for the spectrum is also
performed, since the geometrical sizes are folded into the momentum distribution
in the scaling limiting case. The analytical results are shown to be valid in a wider
rapidity-range than thought before.

1. Introduction

Recently there has been much interest in the measurement and the calculation of the
parameters of Bose-Einstein correlation functions (BECF-s) and those of the invariant
momentum distributions (IMD-s) for rapidly expanding systems with flow and tempera-
ture profiles. Such systems are expected to be formed in high energy heavy ion reactions.
The quality and the amount of available data improved drastically mainly due to the
efforts of NA35, NA44, NA49 and WA93 collaborations at CERN [, 2, 3, 4]. Data from
the dedicated HBT experiment NA44 indicated an unexpected, scaling behavior for the
parameters of the BECF-s [2]. Within the errors of this measurement, the R;ige, Rout
and Ryong parameters of the BECF for S + Pb 200 AGeV central reactions turned out
to be equal and all were found to scale simultaneously, proportionally to 1/~/M,, where
M, is the transverse mass of the identical particle pair. This scaling relation is found
to be independent of the particle type at the present level of experimental precision.
This new generation of HBT data triggered a burst of activity mainly from the
Budapest [5, 6, 7, 8, 9, 10], Kiev [11, 12, 13], Marburg [14, 15] and Regensburg [16,
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17, 18, 19] groups, aiming at interpreting the data in terms of collective, hydrodynamic
behavior. The results from Los Alamos group [20] also indicate collective behavior
caused by re-scattering of secondary particles in the framework called RQMD event
generator. These results are also supported by simulations of re-scattering effects in a
hot expanding gas of hadrons [21]. It became clear, that Bose-Einstein correlations are
in general not measuring the whole geometrical sizes of big and expanding finite systems,
neither in the longitudinal {22] nor in the transverse and temporal directions, since the
expansion may result in strong correlations between space-time and momentum space
variables not only in the longitudinal, but in the transverse and temporal directions,
too, see ref.[9] and references therein for a more detailed account on this topic.

Where have all the geometrical sizes gone? One can show(6, 9], that they are dis-
guised in the invariant momentum distribution of the bosons in case they cancel from
the radius parameters of the Bose-Einstein correlation function (BECF).

We briefly review here the analytical results presented in refs.[5, 6, 7, 9, 10] which
are tested in a detailed numerical analysis in the subsequent parts. The review of the
analytical results mainly follows the lines of ref. [10], but the present review is more
technical than that, since we discuss here also the details of the model emission function
and that of the IMD. Ref. [10] is recommended for the illustration of the physical ideas,
which determine the M, dependencies of the parameters of BECF-s.

2. Wigner Function Formalism

The two-particle inclusive correlation function is defined and approximately expressed
in the Wigner function formalism as

C(AkK) = (n(n—1)) Na(pr.p2d) . | S(Ak, K) P

(n)>  Ni(p1) Ni(p2) 1500, K) [°

)

In the above line, the Wigner-function formalism{23, 24, 25] is utilized assuming fully
chaotic (thermalized) particle emission. The covariant Wigner-transform of the source
density matrix, S(z,p), is a quantum-mechanical analogue of the classical robability
that a boson is produced at a given ¥ = t,x) = (t,74,1y,7;) with p# = (E,p) =
(E, pz, Py, pz)- The auxiliary quantity S(Ak, K) = J d*zS(z, K) exp(iAk - z) appears
in the definition of the BECF, with Ak = p; — p2 and K = (p1 + p2)/2. The single-
and two-particle inclusive momentum distributions (IMD-s) are given by

E do E\Ey, do
Ni(p) = — — = §(Ak=0,p), and  Na(py,p2)= @
1(p) = — ™ ( p) 2(p1,p2) =~ o1 do (2)
where 0,0 is the total inelastic cross-section. Note that in this work we utilize the
3
following normalization of the emission function[7]: [ m.%.&»a.w?.wv = (n).
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3. Effects from Large Halo of Long-Lived Resonances

If the bosons originate from a core which is surrounded by a halo of long-lived reso-
pances, the IMD and the BECF can be calculated in a straightforward manner. The

" detailed description is given in ref.[7], here we review only the basic idea.

If the emission function can be approximately divided info two parts, representing
the core and the halo, S(z; K) = S.(z; K) + Sn{z; K) and if the halo 1s characterized
by large length-scales so that S5p(Qmin; K) << 5c(Qmin; K) at a finite experimental
resolution of Qi > 10 MeV, then the IMD and the BECF reads as

Ni(p) = Nic(p)+ Nua(p), (3)
e | Sc(Ak, K) |2
C(Ak; K) = H+\r|l|||_ T (4)

where Ny i(p) stands for the IMD of the halo or core for i = h,c¢ and

Zu.o:vv ? ]

\/_._ = v:.tN = Ev = Zuﬁwuv

(5)

Thus within the core/halo picture the phenomenological A, parameter can be obtained
in a natural manner at a given finite resolution of the relative momentum. This pa-
rameter has been introduced to the literature by Deutschmann long time ago[26]. See
ref. [7] and references therein for a more detailed account on the origin of this parameter
A+ In the core/halo picture, the effective or measured intercept parameter A(p) can be
interpreted as the momentum dependent square of the ratio of the IMD of the core to
the IMD of all particles emitted.

4. General Considerations and Results

We are considering jets in elementary particle reactions or high energy heavy ion reac-
tions, which correspond to systems undergoing an approximately boost-invariant longi-
tudinal expansion. For expansions fully invariant for longitudinal boosts, the emission
function may depend only on such variables, which are invariant for longitudinal boosts.

These are defined as 7 = /12— 72, 7 = 0.5In[(t + 2)/(t — 2)], m, = VE? - p2,
y = 0.5In[(E + p.)/ (E — p.)] and r, = y/rZ+r]. For finite systems, the emission
function may depend on 7 — yo too, where yo stands for the mid-rapidity. Approximate
boost-invariance is recovered in the | 7 — yo |[<< Ay region, where the width of the
rapidity distribution is denoted by Ay. In terms of these variables the emission function
can be rewritten as

Se(z, K diz = Sc.(m.m 7z, 7y)dTTodndr, dry. (6)
' v y

The subscript . indicates that the functional form of the source function is changed,
and it stands for a dependence on K and yq also.
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Fig. 1. Emission of particles with a given
momentum is centered around 7, and e for
systems undergoing boost-invariant longitu-

dinal expansion, as indicated by the shaded
area.

In the standard HBT coordinate system|[27], the mean and the relative momerta are

K = (Ko, Kout,0,Ky) and Ak = (Qo, Qous, Qsi

, ,0, . = v Qout; Qside, Q). Note that the ;4. component
the mean momentum vanishes by definition[27, 9]. Since the particles M:M on BMmm.Mw%m
we have 0 = K - Ak = NﬂO@o — Nﬁh@h — Nﬂeﬁ@e:«. »

Introducin = K; /K — . .
be expressed mmmmh £ B B0 ot = Kout/ Ko, the energy difference Qg can thus

Qo = Qh@b + QS:@SR. | A.J

If the emission function has such a structure that it is concentrated in a Narrow region

around (75, 1) in the (7, n) plane, then one can evalua i .
»7s) 10 ) s te the BECF i
7 and 7 by utilizing the expansion i terms of variables

Ak-z = Qot — Qouers — @.:.mm%@ —Qrr, ~ Amv

QrT — Qourts — @.:.&mﬂe = QyTs Ad —1s). va

The coefficients of the = and the 7, (n — 7s) are new variables given by |
Q7 = Qocoshn.] — Qrsinh[n,]) = (BiQuoue + B QL) cosh[n,] - Qy sinhn,], (10)

@n = Qrcosh[n,] — Qosinh[n,] = Qy cosh[ns] — (8 Qout + QL) sinh[n,]. (11)

In terms of these new variables the BECF reads as

" | S(Ak,K) |2 13 g ;
C(Ak; K) = 14 = = 14 A, ()22 (@ Ony Qour, Quige) |
5o mp A [ 5:.4(0,0,0,0) (12

At nEm level, the mrw_um of the BECF can be rather complicated, it may have non-
Gaussian, non-factorizable structure. Gaussian approximation to eq. (12)

: ) . K
down as discussed in more detail in the Appendix of ref.[9] may brea

5. Mixing Angle for HBT

The wMOm,-w are ?on:w::imﬁ but not exclusively[29] parameterized by some version
of the Gaussian approximation. The out-longitudinal cross-term of BECF has also been
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discovered in this context recently[16]. In order to identify how this term may come
about, let us assume that

Sen(rinra,ry) = Hu(r) Gu(n) Llrz, y)- (13)
In Gaussian approximation one also assumes that
Ho(r) « exp(~(r—7)*/(2A7))), (14)
Guln) o exp(=(n—n,)*/(2An)), (15)
L(rz,ry) o exp(—( (r= — ﬂa.uvu +(ry — ﬂe_uvwv\ﬁwmmv ). (16)
The corresponding BECF is given by a diagonal form as
C(Ak; K) = 14 A, exp(—Q2ATE — QZrlAnl — QIRY). a7

This diagonal form shall be transformed to an off-diagonal one if one introduces the
kinematic relations between the variables @, @, and the variables Qout, QL. In the
HBT coordinate system({27] one finds

C(Ak;K) = 1+ A, exp(—R24eQ%4 — R2, Q% — R}Q] — 2R}, 1 QoutQL)(18)
Bhg = B (19)
R}, = RI+4Rg,, (20)
8R%, = PP(cosh’[n]Ar} +sinh*[n,]rAnd), (21)
R} = (Brsinhn,]— cosh[n,])272An2 + (B cosh(n,] — sinh([n,])2Ar2, (22)

Rlyp = (Becoshln,)(Br coshln.] — sinh{n.]))Ar] +
(B¢ sinb{n,) By sinhln,] ~ coshlr})r2An?. (23)

Note that the effective temporal duration, A7, and the effective longitudinal size, T A1,
appear in a mixed form in the BECF parameters §R2,,, R% and mw:i: and their mixing
is controlled by the value of the parameter 7,. These results simplify a lot[9] in the

LCMS, the Longitudinally Co-Moving System(30], where 81, = 0:

§R%, = PP(cosh’[n]Ar? +sinh’[nr}Anl), (24)
R = cosh’[n,]JriAn + sinh?[n,]AT2, (25)
mwi_h = —f sinh[n,] cosh[n,J(AT2 + T2 An?). (26)

Let us define the Longitudinal Saddle-Point System (LSPS) to be the frame where
75(m,) = 0. In LSPS one finds that

§R:,, = piATl, (27)
R = ﬂmbsml*‘mmbﬂm, (28)
Ryl = BBLATl. (29)

2w+ @7, the BECF can be rewritten

oul

Introducing Qo = Bt Qout + B QL and Q¢ =
in LSPS as

C(AK K) = 14 A exp(-AT2Q] — r1An2Q7 — RIQ)). (30)
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Thus the out-long cross-term can be diagonalized in the LSPS frame[18, 9]. The cross
term should be small in LCMS if 7L¢MS << 1ie. if | y -y |<< Ay [9]. Since the

size of the cross-term is controlled by the value of 7, in any given frame, it follows that

ns i the cross-term generating hyperbolic mizing angle[9] for cylindrically symmetric,
longitudinally expanding finite systems which satisfy the factorization of eq. (13). The
physical meaning of this hyperbolic mixing angle 7 is illustrated on Figure 1.

6. A New Class of Analytically Solvable Models

For high energy heavy ion feactions, we model the emission function of the core with
an emission function described in detail in ref.[9]. This corresponds to a Boltzmann
approximation to the local momentum distribution of a longitudinally expanding finite
system which expands into the transverse directions with a transverse flow, which is
non-relativistic at the maximum of particle emission. The decrease of the temperature
distribution 7'(z) in the transverse direction is controlled by parameter a, the strength
of the transverse flow is controlled by parameter . Parameter d controls the m?msmnm
of the change of the local temperature during the course of particle emission[9]. If
all these parameters vanish, a = b = d = 0, one recovers the case of longitudinally
expanding finite systems with T'(z) = Tp with no transverse flow, as discussed in ref.[6],
if a = d =10 # b the model of ref.[16] is obtained.

Specifically, we study the following model emission function for high energy heavy
ion reactions:

S(z; K)d*z = %wx: cosh(n — y) H(7) x

K-u(z) | plz)
“P\TTTE TR

dr rpdndr dry. (31)

Here g is the degeneracy factor, the pre-factor my cosh{n — y) corresponds to the flux
of the particles through a T = const hyper-surface according to the Cooper-Frye for-
mula [31] and the four-velocity u(z) is

2 4,2\ 42 2, 2\ (1/2)
ro+rT Ty Ty . 9 re+r
.:.A&v = OOmw—Adv L+ @m < q.ou . 3 b lqw‘ b ﬂolw m:.—TAdv 1+ b |~.,,I.ﬂ%||m|
2 4 g2 2, .2
re+T Tz ry . 5 P 4
>~ | cosh(n) | 1+b* Iﬂm . b e b - sinh(n) { 1+ Era L1, (32)

which describes a scaling longitudinal flow field merged with a linear transverse flow
profile. The transverse flow is assumed to be non-relativistic in the region where there
is significant contribution to particle production. The local temperature distribution
T(z) at the last interaction points is assumed to have the form

1 1 e

L (= ﬂovw
= 1+ | g B0
T(z) To T T

(33)
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and the local rest density distribution is controlled by the chemical potential p(z) for
which we have the ansatz

pz)  opo TiArE (- o)’

= e - i 34
T(z) To  2R% 2An* S

The parameters Rg and An control the density distribution with finite geometrical
sizes. The proper-time distribution of the last interaction points is assumed to have the
following simple form:

: 1
H(r) = %mxv (—(r — )%/ (2A7%)). (35)
The parameter AT stands for the width of the freeze-out hyper-surface distribution,
i.e. the emission is from a layer of hyper-surfaces which tends to an infinitely narrow
hyper-surface in the Ar — 0 limit.

The integrals of the emission function are evaluated using the saddle-point method
{22, 11, 17}. The saddle-point coincides with the maximum of the emission function,
parameterized by (75,7s,7z,s,Ty,s). These coordinate values solve simultaneously the
equations

s as oS as

ar an  Orz  Ory
These saddle-point equations are solved in the LCMS, the longitudinally Co-moving
system, for nF€MS << 1 and r, , << 79. The approximations are self-consistent if

|Y —yo |<< 14+ An?my /Ty — An? and B, << 72An%/(bR?) which can be simplified for
the considered model as B, = p,/m; << (a*+b?%)/b/ max(1, a,b). The transverse flow is
non-relativistic at the saddle-point if 8 << (a?+ b?)/b*/ max(1, a, b). We assume that
AT < 79 so that the Fourier-integrals involving H () in the 0 < 7 < 0o domain can be
extended to the —o0o < 7 < oo domain. The radius parameters are evaluated here to
the leading order in ry ;/79. Thus terms of O(r; ;/7) are neglected, however we keep
all the higher-order correction terms arising from the non-vanishing value of %, in the
LCMS.

For the model of eq. (31) the saddle point approximation for the integrals leads to
an effective emission function which can be factorized similarly to eq. (13). Thus the
radius parameters of the model are expressible in terms of the homogeneity lengths
An., R., A7, and the position of the saddle point 7, i.e. the cross-term generating
hyperbolic mixing angle. The saddle-point in LCMS is given by 7. = 75, nt¢MS =
(Yo = Y)/(1 +An*(1/An% — 1)), ros = BebR2/(10An%) and 1y s = 0.

7. Geometrical vs. Thermal Length Scales for BECF-s

The parameters of the correlation function are related by eqgs. (18-29) to the parameters
R., Ar, and 1,An. which in turn are given by

] 11 = )
m|w+ xm\«wﬂno@:?? (37)

\Nm

*
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1 _ 1 i 1 L 1
= — coshin,] — )
An? An? AR (o] cosh?[n,]’ (38)
L 1 1 .
A2 T Af? £ ATE cosh{n.]. (39)

Here the geometrical sizes are gi
given by Rg, the transverse size, A i
: et | sizes a , , An, the width
mvaa.SBm rapidity n__ma.:v:_ms.s and Ar, the duration around the mean emission S:MM
TS _,.I_ 7o. The hyperbolic mixing angle n; ~ 0 at mid-rapidity yo [9], where also the
out-long cross-term[16] vanishes. The thermal length-scales (subscript ) are given by

2
R2 o To 3 _ Io 2 Ty
— A - I
QN +~vn g« ] dn.. = D.UH = &'MN»'&M.

M.’ (40)

The transverse mass of the pair is denoted by M, = VK e
. These analytic expressions indicate that the BECF <m_m€m omm% a part of the
time volume of the expanding systems, which implies that even a complete meas crmont
of n?.w parameters of the BECF as a function of the mean momentum K m ot B
m:mmo_mn_.. .oo determine uniquely the underlying phase-space distribution " not be
It is timely n.o emphasize at this point that the parameters of aa.womwm-m. tei
correlation ?:oros coincide with the (rapidity and transverse mass dependent) Mzm w“s
of homogeneity[22] in the source, which can be identified with that region in coo M.:m nm
space where particles with a given momentum are emitted from. The lengths Omn:_:m y
geneity for thermal models can be obtained from basically two type of . 1 o:._o.
to as ’thermal’ and ’geometrical’ scales. Ybe of seales referred
The nw.mmgw_ scales originate from the factor exp(~p - u(z)/T(z)), where u(z) is th
four-velocity field. This is to be contrasted to the ’geometrical’ mmm._mm SEMr _M.m i
nate from the exp(u(z)/T(z)) factor which controls the density %mf.:u:_aoiw_ Mmm_-
p(z) stands for the chemical potential. How do the changes of the temperatur 3 MMo
transverse or temporal directions induce transverse mass dependent ::WEML aawz .
thermal duration parameters? See ref. [10] for illustration. e
As a consequence of possible temporal changes of the local temperature, we find
that the effective duration of the particle emission A7, may become Smcmsw,amm mass
dependent m.:m. for sufficiently large values of the transverse mass this parameter ma
UwooBm wm:_mr:_m_% small. The reason for this new effect is rather .WE le: Mumﬁa&mw
with a higher transverse mass are effectively emitted in a time interval Eﬂmw the local
temperature (boosted by the transverse flow) is higher than the nosm.EQ.m& value for
me. HM the «oom_ temperature changes during the course of particle emission, the mm.aoﬁ?m
emission ﬁ.:zm for high transverse mass particles shall be smaller than ‘25 effective
emission tume of particles with lower transverse mass values. |
. .mo_. a more detailed analysis of the model the reader is referred to ref.[9, 32], where
it 1s vo._:.umm out that under certain conditions the parameters of the .mmw,?mw:mnmm:
correlation function may obey an My-scaling: R,;q40 ~ Ryt = Ry o M\/\y\l.u
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8. Results for the Invariant Momentum Distributions

The IMD plays a complementary role to the measured Bose-Einstein correlation function
[6, 5, 8]. Thus a simultaneous analysis of the Bose-Einstein correlation functions and
the IMD may reveal information both on the temperature and flow profiles and on the
geometrical sizes.

For the considered model, eq. (31), the invariant momentum distribution can be
calculated in such a manner, that the Cooper-Frye pre-factor my cosh(n — y) is kept
exactly and the saddle-point approximation is applied to the remaining Boltzmann and
proper-time factors, exp(—p - u/T(z) + p(z)/T(z)) H(r). This calculation yields:

_ . a. B ,
Mielp) = s (2077 (@rR.) o0 mecosh() exp(+80.°/2) x
exp(—p - u(Z:)/T(Ts) + p(Z:) /T(Ts))- (41)
The quantities D:*m and 7]; are defined as
1 1 1 -
= — + cosh[7;], s (% —y) (42)

An.. A Anp 1+ A7/ Ang

and the modified saddle-point is located in LCMS at 7; = 7, = 70, 5, 77,5 = mhzw*w\
(roAnZ) and Ty 5 = 0. The modified radius and life-time parameters can be obtained
by evaluating the R. and Ar, parameters at the space-time rapidity coordinate of the
modified saddle-point, R, = R,(7EM5 = 7;) and A7, = An(nfM5 - 7;). Thus
the modified quantities (indicated by over-line) differ from the unmodified parameters
of the saddle-point approximation by the contributions of the Cooper-Frye pre-factor.
Note, that R, ~ R, and Ar, ~ Ar, in the mid-rapidity region, where nLCM5 77 << 1.

In eq. (41) the exact shape of the four-velocity field can be used, which is given
in the first line of eq. (32). When evaluating p(Z;)/T(%;) in any frame, the invariant
difference 7; — y5 “M5 = 7; + y — yo should be used.

The momentum distribution as given in eq. (41) can be rewritten into a more explicit
shape, which is more suitable for analytic study. This can be done if one neglects terms
of O(75,°/78) in the exponent, which is the same order of accuracy which has been
utilized for the solution of the saddle-poinl equations. Further, a term in the exponent
(m¢/To) cosh(7;) is approximated by its second-order Taylor expansion, (m./To)(1 +
0.5%;2 ). These approximations yield

AT, 2
Nielp) = g (2087, r2)V2 (2mR2) — mq cosh(T) exp(+57.°[2)
(2m) Ar
Qlwcvm

exp {po/To) exp | ——————7 | X

580 2(A7* + Ang)

my mm ] ::mm
> — 11— f— —f ], 43
e e A A e (13)
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where the geometrical contribution to the effective temperature is given by Tg(m:) =
To R% /Ry (my) = (a® + b?) my R%/7¢ and the fraction f is defined as f=b%/(a®+b?),
satisfying 0 < f < 1. The following relations hold:

1 / 1-f

Ay? = An® 4+ An? d —_=
y* (me) 7° + Ang(my) an T. ™ Tot Totme = m) + T

(44)

Thus e.g. the width Ay?(m;) is dominated by the longer of the geometrical and thermal
length scale, in contrast to the HBT radius parameters which are dominated by the
shorter of these scales. That is why the IMD measurements can be considered to be
complementary to the BECF data.

9. Analysis of Limitations

The simple analytic formulas presented in the previous sections are obtained in a saddle-
point approximation for the evaluation of the space-time integrals. This approximation
is known to converge to the exact result in the limit the integrated function develops a
sufficiently narrow peak, 1. e. both

Ani(y,m;) << 1 and A (y,m)/TE << 1 {45)

are required. These in turn give a lower limit in m; for the applicability of the formulas
for the class of models presented in the previous section. These limits were studied
analytically in ref. [9], here we analyze them numerically in the subsequent parts.

Compared to the condition (45), the condition of validity of the calculation of
the invariant momentum distribution is less stringent, since one needs to satisfy only
Dl:w << 1. In the mid-rapidity region where NA44 data were taken, one has n, >~ 0 and
for finite systems one finds m; >> To(2— 1/An?%). Note that this estimated lower limit
in m, is extremely sensitive to the precise value of Ap in the region An ~ 1/V/2~0.1.
For finite systems, the region of applicability of our results extends to lower values of
m; than for infinite systems which were recently studied in great detail in ref. [19]. An
upper transverse momentum limit is obtained for the validity of the calculations from
the requirement

Q.H.u\ﬁo < 1 Ahmv

or xw_u\ﬂ% << 1. This condition and the requirement br; /70 < 1 has to be fulfilled
simultaneously. Finally we note that the linearization of the saddle-point equations
assumes that

nEOMS <1 (47)

and for the IMD calculations a less stringent condition 7; < 1 was assumed.

When comparing to data, detailed numerical studies may be necessary [19] to check
the precision of the saddle-point integration. In the subsequent chapters, we present
these tests for the analytic results given above and indicate the numerically found
validity or violation of the conditions given in this Chapter.
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Fig. 2. BECF parameters in LCMS, the IMD and the essential *small’ parameters. Solid line
shows the results of numerical integration, dash-dotted line indicates the analytical results.
Note that the transverse flow is switched off and T'(z) = To as follows from a = b=d=0. The
longitudinal size is chosen to be small, A = 0.3. On the last sub-plot, solid line indicates An.,

dash-dotted line stands for rz /7 and dashed line for nEEMS  These quantities are required
2/ << 1

to satisly An? << 1, ﬂw_m\ﬁw << 1 and n¥M5 << 1. The other conditions, A7,
and MMN << 1 are weaker conditions and thus not indicated on this and the subsequent plots.

10. Numerical test for the a = b = d = 0 case

Let us start the numerical analysis with a set of parameters, that satisfy both condi-
tions (45) and (46). This is the reason for choosing @ = b= d = 0 and Anp = 0.3 which
guarantees that An, << 1is satisfied. We start the analysis at mid-rapidity, and devote
the last chapter to studies in the target and projectile fragmentation region. Note that
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Fig. 3. Same as Figure 2, but with i itudi i 2

T éEMnr re E.n ut wit _E.nwmwmm& longitudinal size, An = 1.25. In the low-m,
> 1, sults in a slight increase of the numerically calculated Roy, co t

as compared to the analytical result. o componen

the out-longitudinal cross-term [16] vanishes at mid-rapidity.

Due to gm. _wnmo number of model-parameters a rather comprehensive analysis is
necessary and it is important to check the effects from various type of vmwwamamw

>on=m can see on Figure 2 the agreement between the analytical results m:a. the
:Edmn.—aw:% evaluated radius parameters and IMD is almost perfect. Note that for the
analytical calculations of the HBT radii in LCMS egs. (18-29 wu-wnv were :mmnn_: the
IMD has been analytically evaluated both from the slightly Eo“am UH..QOo eq A.A..wv, and
from n.:m more approximate eq. (41), both yielding results m:a_.mﬁ.m:m.:i_iza. from the
numerically integrated curve. For the numerical results on the HDBT SA:_\ we have
evaluated the model-independent Gaussian radii in LOCMS, as given in refs T‘q _&g for
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Fig. 4. Transverse flow, transverse and temporal temperature gradients are switched on.
Parameters correspond to a scaling limiting case at mid-rapidity. The numerical integration
(solid line) is performed for the approximate transverse flow profile. Dash-dotted line indicates
the analytical results. For the IMD sub-plot, dashed line stands for the simplified analytical
result, eq. (43), and dash-dotted line indicates the slightly more precise eq. (41).

the model emission function of eq. (31). For the numerical evaluation of the IMD, we
have utilized eq. (2).

How significant is the limitation given by eq. (45)? Can we apply the analytical
results to systems created at 200 AGeV bombarding energy, where An ~ 1.5? According
to Figures 3 and 6 the analytical results provide a good approximation even in this case,
(note that Figure 6 is evaluated for An=15fora,b,d#0). The relative error on these
figures is maximal around m; = 240 MeV for pions, being about 10 % for Anp = 1.2, 20 %
for Any = 1.5. These errors are characteristic for the R, and Riony radius parameters.
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The si 1 1
o M%,im radius component .m:a the spectrum is obtained with much smaller errors. Th
1ve error of the analytical results vanishes with increasing m, for this case .‘H::M

the analytic approximations i
e are reasonably good, sometimes excellent if ¢ = b — d=10

11. Flow and Temperature Profile Effects

MWM%WMMM_@H :M:ém.:_mr_.:m _uwnm_doamwm a,b and d are studied in this chapter. Figures
b con thm MOo NMN_WSQL results with the numerical ones for An = 0.7 case, Figure
yshows the ol rAn= 1.5. H:.m model paraneters of these figures correspond to an

pp ate m, scaling for the radius parameters of the BECF. On Figure 5, the model
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Fig. 6. Same as Figure 4, but the longitudinal size of the system is increased.

was integrated numerically utilizing the exact flow profile, as given by the first line of
eq. (32). On Figures 4 and 6, the approximation given in the second line of eq. (32) has
been performed before the numerical integration. In this case, the high m; limit of the
analytical calculations corresponds to that of the numerical one, as it should because
the radius parameters of saddle-point integration decrease with increasing m; and thus
the precision of the saddle-point integration increases with increasing value of m,.

In the region of m, —m < 200 MeV, the relative error of the analytical calculations
for the HBT radius parameters is about 10 %. In case of the IMD the relative error
refers to that of the slope parameter, which is approximately 10 % on Figures 4 and 6.

It is worth comparing Figure 4 with Figure 5. The analytical curves on these figures
are the same, but the flow profile eq. (32) is exact on Iligure 5, while the approximatiorn
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Fig. 7. Numerical integration done with exact flow profile, case Rg < Rr(m) for pions.

in eq. (32) was performed before the numerical integration on Figure 4. The side and
the longitudinal radius parameters are not changed significantly, however the high m;
part of the spectrum and the out radius parameter is enhanced, increasing the deviation
between numerical and analytical results to about 20 - 25 % in the kinematic region
me —m < 600 MeV. Note that the two analytic approximations for the spectrum,
egs. (41) and (43) yield slightly different results, as indicated by the dashed and dash-
dotted lines on the IMD part of the Figures, respectively.

12. Pions vs. Kaons

One expects that the precision of the calculation is increased for particles heavier than
pions, because the thermal scales and thus the radius parameters decrease with increas-
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Fig. 8. Same parameters as for Figure 7, but for kaons.

ing transverse mass. This is indeed the case, as indicated by Figures 7 — 10. When
evaluating the numerical integrals for these figures, as well as Figures 11 - 16, the exact
flow profile has been utilized.

The radius parameters are dominated by the geometrical ones on Figures 7 and
8, resulting in a weaker m, dependence, while on Figures 9 and 10 the HBT radius
parameters are dominated by the thermal scales since Rg > Rr(m) for pions, and the
radius parameters satisfy approximate m, scaling. On these figures, the precision of the
analytic results is nowhere worse than 20 %, in some cases especially for kaons and for
the side and the longitudinal radius parameter at higher m, the relative errors become
less than 5 %.
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Fig. 9. Numerical integration done with exact flow profile, case R > Rr(m) for pions

13. Beyond the Limitations

<<m. have m:m.mm% seen that the conditions for the smallness of An. are automaticall

satisfied at higher m, thus the requirement (45) is not very ?:vo;mw» On ﬁrm:gnawwo.sw
m‘nwvrmu we have shown figures where the other condition for the <m:a..:a\ of ;m_ww_n:_w.
tion, eq. T_mv has been satisfied. In this chapter we violate this condition e (46) by a
mmoSEm_KEBOnmbﬁ change in the values of the parameters a, b, Rg and 7 %im wa, W:m
mma&m-vo:; z4(m,) deviates more and more from zero m.:a, :U“ moves O:M,n”Em the W ion
where .i_m r:om:NmsO: of the saddle-point equations is allowed H.H::‘ th :Lm Mom_
.m_uvﬁoEEm:omm break down as illustrated on Figures 11 - 13 ‘E.:v _,:o.wa w o M\mmoon
1s Qummwém_o_a in the sub-plots indicating the IMD. The m_ovm.qvm;.%_:l. wm:o:m bad]l

estimated by the analytical results if the condition (46) is violated F»AaMoMQ,*MNdQ?MH
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Fig. 10. Same parameters as for Figure 9, but for kaons.

interpretation of the condition (46) can thus be formulated as r; /70 < 0.6. (Here
I rps/m0 < 0.6, the numerical and analytical results are in 10 -20

we assume b < 1.)
% agreement at mid-rapidity, however if ﬁw_m\ﬁom > 0.5, the reliability of the analytic

calculation is lost. The precision of model calculations for pions are very sensitive to
whether this condition is well satisfied or violated.

Note that our analysis has been performed with Ty = 140 MeV fixed. Lower values
of Ty improve the agreement between the analytical results and the numerical ones,
while larger values of Ty in general make the deviations larger in a given kinematic
region. ‘

Surprisingly, the HBT parameters for kaons are well reproduced even il Fm..,n\ﬂ%
0.5, except the R, radius parameter at high .. For pions, the relative error on

~
~



604 T Cséré, P Lévai, B Lérstad
%_O M_On
o 8 © 8F
6 mml
4 4 F
I vy
2 2 F
obaaalaasla, obiaalaaslae,
0 0.2 0.4 0.6 0 0.2 0.4 0:6
m, ~ m. {GeV) m, — m (GeV)
10 p 10 g
A FOF
& 8F i sk
s F « E
E OF
4 F E
2 [memesacscemmens = 3
obuaatlaat s Lo”..._..._...
0 0.2 0.4 0.6 (4] 0.2 0.4 0.6
m, ~ m (GeV) m, — m (GeV)
~—~ |I..‘_.n|u -
5 £ G E
m\ —l! m —fom @O
© /...O.m = e
= < 2
£ 2 pEses -
~ = E
c < Fi sl eaa Lo
~ -0.5
© o] 0.2 0.4 0.6 0 0.2 0.4 0.6
m,— m (GeV) m, — m (GeV)
To=15 fm/c To = 140 MeV a =05 Yo=3
AT =2 fm/c m = 494 MeV b = 0.87 y =3
R,= 8 fm g=2 d=1 A =15

Fig. 11. Results for kaons, using a parameter set where the limitation zs(me)/70 << 1 is
violated: zs(m.)/70 > 0.6.

the radius parameters may reach 50 % for the side and the longitudinal momentum
component, while it may reach 100% for the out radius component. Thus the condition
of eq. (46) is substantial, it is mandatory to check it before concluding about the
validity of the analytical approximations e.g. in a given data analysis.

14. Departure from Mid-Rapidity

Finally we turn our attention to LCMS radius parameters and IMD results off the mid-
rapidity region. We use such parameters that the analytical approximations are precise
to 10 — 20 % relative errors at mid-rapidity. For y # yg, the out-longitudinal cross-term
picks up non-vanishing values. This cross-term must vanish at m, = m, it develops a
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Fig. 12. Results for pions, using a parameter set where the limitation z(mi)/10 << 11s
violated.

large modulus around m; — m = 50 MeV, which decreases fast with increasing value
of m,, Figures 14 - 16. Surprisingly, the precision of the analytical approximations for
side, longitudinal radius parameters and for the IMD is improved by moving one or two
units away from the mid-rapidity. This is due to the fact that r; 5, R., An, and A, all
decrease with increasing 7, which corresponds to increasing values of | y — yo |- Figure
15 indicates that the analytic calculations may remain reliable even if y = 1 for a source
centered around yo = 3 and having a width An = 1.5, except the analytical result for
the cross term in the low m, region. However, the analytical results for the cross-term
are below the 20 % relative error limit if m; —m > 150 MeV or if Ay < 0.7. With other
words, the deviation of the analytical result for the cross-term from its numerically
calculated value decreases very fast with increasing my. Figures 14 - 16 indicate, that
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Fig. 13. Another violation of the limitation z:(m¢)/70 << 1, using ¢ =0 and b=1.

the analytical results for Rsige, Riong and the IMD can provide an approximation with
as small as 5 - 10 % relative error, for Roy: with 15 % relative error even if the departure
from mid-rapidity is substantial, | y — yo |~ 2An. According to Figure 16 the analytical
approximations are reliable for m; — m > 150 MeV if y = 6, for lower values of mu
the longitudinal saddle-point nLC€MS is badly determined, due to the break-down of the
linearized saddle-point equations.

15. Summary and Conclusions

We have presented a detailed numerical testing of the analytical approximations, as
were given in [9] describing a three-dimensionally expanding, cylinc sally symmetric,
finite system. We find that the typical precision of the analytical approximations 15

Pl
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Fig. 14. Numerical versus analytical results at y = 2. Note that mid-rapidity is located at
yo = 3 and that the longitudinal size is given by An = L.5. Note that A7 =0 fm/c.

characterized by a relative error of about 10 - 20 %, but in some cases much more precise
agreement is found. Numerically, we have found that the analytic approximations are
reliable (within 10 -20 % relative errors) if the transverse position of the saddle-point
satisfies 7z /70 < 0.6 in some kinematic region. Numerically we find that this condition
is the most sensitive among all the analytically found conditions for the validity of the
analytical approximations, and a small violation of this condition may result in large
deviations between the analytical and numerical values. This corresponds to the break-
down of the linearized saddle-point equations in tlis case.

Surprisingly, we find that moderate deviation from mid-rapidity improves the agree-
I ies for the HBT

ment. between the analytical results and the m v for
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Fig. 15. Same as Figure 14, but in the target fragmentation region y = 1 and for At = 2fm/ec.

radius parameters and the invariant momentum distribution. This is due to the de-
crease of the transverse position of the saddle-point and the decrease of the effective
source sizes with increasing deviation from mid-rapidity | y — yo |. For large deviations
from mid-rapidity, e.g. | ¥ — yo |= 2An, the analytical values for the cross-term and
for the HBT radius parameters are found to be unreliable in the m; —m < 150 MeV
interval. However, for larger values of m; — m the HBT radius parameters, including
even the cross-term, are reproduced correctly even at y = 6. This lower limit m; > 150
MeV corresponds to the requirement pkCMS < 0.9.

In conclusion, we find that the analytical results are more reliable than expected
before, since they are reliable in a fairly large rapidity interval. When comparing the
analytic results to data, one has to check if the transverse position and the space-time
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Fig. 16. Same as Figure 15, for y = 6.

rapidity of the saddle-point is not too large in LCMS. The essential numerical conditions
of consistency are found to be r; /7 < 0.6 and nlCMS < 0.9.
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