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We have developped an analytical approximation scheme for HBT-radii which
converges rapidly to the widths of the numerically computed correlation function.
Higher order contributions within our approximation scheme are essential, and
the previously published lowest order results with simple m scaling behaviour
are quantitatively and qualitatively unreliable. ‘

1. Introduction

It is commonly agreed that the experimentally measured Hanbury-Brown/Twiss (HBT)
correlations between two identical bosons of momenta p, p2 should be fit to gaussians
of the form[1] ‘ .
C(K,q) ~ 1+ A e~ R -RIK)al - 72 (K)qf 282 (K) g (1)
where ¢ = p; — py, K = wﬁ: + p2). Here, the subscript L denotes the longitudinal
or z-direction parallel to the beam, the out or z-direction parallel to the transverse
component of K is denoted by the subscript o, and the remaining side or y-direction
carries the subscript s.
Also, there exists a well-established[2, 3, 4] theoretical approximation for the calcu-
lation of C(K, q) from specific models,

|f diz MAevw‘va.a_w
:&»a S(z, \»‘v_m

C(K,q)~1+ ; (2)

where 4 = E; — E3 and Ko = Ex = /m® + |K|. Here, a model is specified by an
emission function S(xz, K') which describes the phase space density of the boson emitting
source.
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In recent years, calculations of the momentum dependence of HBT-radii have ap-
peared for several models S(z, K).[5, 6, 1, 7] These were based on lowest order approx-
imations in a saddle point expansion and suggest simple my scaling laws.  We have
developped a convergent all-order approximation scheme for HBT-radii, applicable to
an interesting class of emission functions, and we have checked its results against the
exact values obtained numerically.[8] We find that the previously published lowest order
results with simple m; scaling behaviour are quantitatively and qualitatively unrelj-
able. Referring for the many technical details to the literature, we emphasize here the
consequences of our findings for the physical interpretation of the measured HBT-radii.

2. HBT-radii measure the half widths of the emission function

A very popular method for calculating HBT-radii is based on the gaussian saddle point
approximation(9]
S(z, K) ~ S(&, K) e~ 3(z-8)(=-2)" B (K) ()

where £ = £(K) denotes the saddle point of S(z, K'). This leads to
C(K,q) = 14+ B hut"d” )

Here, a technical caveat has to be made: the usual procedure{6] of determining B, (K)
via the curvature —8,9,InS(z, Nw\v_mﬁﬁ has a very limited range of validity and leads
very often to unreliable results. In contrast, the half widths of S(z, K) describe the
spatio-temporal fall-off properties of realistic source distributions much better[8] since
they do not presuppose a gaussian behaviour of S(z, ) around the saddle point.3Con-
sequently, we advocate the determination of By, (K) via the variance of Sz, K),

Amlpvt.\ (zpzy) — (zp){zy)

€ = (€K)= % |

(5)

i

which provides a very good measure of the half widths. The HBT-radii are then given
by linear combinations of the (B~1),,’s. Using the on-shell constraint of p;, ps, for
boson pairs with |q| <« Ek, we can approximate the temporal component of ¢ via
q° ~ Bigo+ BLer, Bi = Ki/Ek. Inserting this into (4) and comparing to (1), one
obtains for the case of an azimuthally symmetric source, (i.e. S(z, K) is invariant under
y— '@:H‘ @. m_ HMN

R = (%),

2 = {{z - Bty — ((z - BLO),

R} = ((z=But)’) — ((z - Br1))’,

R = ((x—But)(z—But)) — (v — BLi)){(z = Brt)) . (6)

L . o . o2 N , s
?E.g., an emission function Sz, K) = ¢~ <@ 2" o(KY has zero curvature at 3 = 0, but is sufficiently
well approximated by eqgs. (3) and (5).
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Let us note in passing that (B~1),, is in general a symmetric 4 x 4 matrix with 10
independent entries and the mass shell constraint combines them into 6 independent
HBT-radii: R%2(K), RY(K), R¥(K), RZ,(K), R%(K), R%(K). For azimuthally sym-
metric systems, the side-out, side-longitudinal and side-temporal elements of (B=Y

vanish, and the remaining 7 non-zero entries combine to the 4 different HBT-radii of

(6)-
3. A longitudinal boost-invariant model

In what follows we study a simplified model for heavy-ion collisions which shows already
a number of essential physical features.[6, 8] This model allows for a controlled investi-
gation of our analytical approximation scheme and a direct comparison with previously
published lowest order results. It is defined by the following emission function:

Sz, K) = DAY o~ 552 o= 553 5 (7 — 1) (7)

- (2m)®

where T" is a constant temperature along the sharp freeze-out hypersurface L(z) =
(rocosh, z,y, msinhn), t = mysinhn, z = yeoshn, my = \/m?+ K%, and Y is the
rapidity of a particle with momentum K, = {m_ coshY, Ky ,0,m  sinh Y). We consider

a flow which shows Bjorken expansion in the longitudinal direction (n = w_sAmwvv

u,(z) = (cosh n cosh 7, 2 sinh e,

- Y sinh 7, sinh g cosh ;) (8)
”

with linear transverse flow profile n(r) = n;%. The geometric extension of the source

in the transverse coordinate r = \/x? + y? is specified by R, and 7Ny is the transverse
flow velocity of the fluid at »r = R.

3.1. An analytical approximation scheme

We have developped a convergent all-order approximation scheme for the HBT-radii
{6) of the class of models (7). Here, we restrict ourselves to emphasizing the main
points in which it differs from previous approaches, referring for further details to the
literature:[8]

¢ the n-integration is done analytically, leading to modified Bessel functions K, {a),
a = " cosh#. In contrast, previous discussions of (7) use a gaussian saddle
point approximation for the #-integration or consider the case 7),(r) = 0 only.

o The Bessel functions K, (a) are expanded asymptotically in a series up to order
p. For each order n < p, a saddle-point z,(K) is determined by an interation
scheme. Compared to previous discussions of the model (7), this leads to a much
more accurate treatment of the z-and y-integrations.
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Fig. 1. The side HBT-radius R.(K) for the emission function (7) with linear (top) and

quadratic (bottom) transverse flow profile.

3.2. The results

In what follows, we work in the longitudinal comoving system (LCMS) which is the
longitudinal boosted Lorentz frame defined by K1 = ;. = 0. Note that the longitudinal
boost invariance of S(z, K') implies the symmetry of the emission function with respect
to z — —z and hence, the out-longitudinal cross term R2,(K) vanishes for the model
under consideration. To lowest order, our approximation scheme reproduces various
results in the literature, as long as we insert the less accurate expressions for the saddle
point #(K) used in these earlier discussions. Especially, we find to lowest order the old

On the validity of approximation schemes. .. 579

[
4
~
£
=
83
n,
bV
A
~ 2
<
%
o
1
[}
0 200 400 500 800 1000
K, (MeV)
s
4
£
=
=8
n,
b4
]
< 2
-
o
1
0
] 200 400 600 800 1000
K, (MeV)

Fig. 2. The longitudinal HBT-radius Ri(K) for the emission function (7) with linear (top)
and quadratic (bottom) transverse flow profile.

Makhlin-Sinyukov expression
T
my

e &)

=172 [Makhlin and Sinyukov[5}}, {9)

R

and to next-to-lowest order, we confirm the OTMM )-part of the corrections obtained for
ER

small transverse flow 7; < 1:

1 T
Nww = ﬂ%m.mw 1+ AM + % SI._r y ?u_wm._ud\_mbg Scotto and mmm:N?:_
(10)
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2 R? 2
EHH+E%+WA%V 178
' [Chapman, Scotto and Heina[1]] (11)

T

Also, for vanishing transverse flow, our calculation coincides with the exact result of
Herrmann and Bertsch,

Ka(me
R} = ﬂom’ﬂl ~MA:N, )
my Nﬂuﬁlw%v

[Herrmann and Bertsch[10]]. (12)

To check the validity of these lowest order results, we have evaluated the HBT-radii
for an emission function (7) with linear transverse flow according to the three differ-
ent methods listed below. Also, we have evaluated numerically the HBT-radii for a
quadratic transverse flow profile ne(r) = 1y WM. The results are compared for linear
(quadratic) flow in the upper (lower) diagrams of Figs. 1 - 3:

1. The solid lines are obtained by numerical evaluation of the HBT-radii (6).

2. The long-dashed lines denote the numerically determined half width of the corre-
lation function (2) in direction 3.

3. The short-dashed lines represent the result of our analytical approximation scheme,
including all terms up to order p = 3. The dash-dotted lines show the same ana-
lytical expressions but truncating the expansion at lowest order. These analytical
results have been calculated for linear transverse flow profiles only.

Let us summarize the most important features of our results obtained for linear trans-
verse flow [8]:

¢ The side radius R, obtained analytically from {6) approximates very accurately,
even to lowest order p = 0, the exact numerical value. Also, it is consistent with
the numerically determined half width of C(K, q) in {(2). Our studies showed
however that, if calculated with the previously used approximate expressions for
the saddle point Z(K) instead of our refined iteration scheme sketched in 3.1,
R, develops for large transverse flow rapidities n; > 0.3 a much stronger K-
dependence than the exact side radius. This renders an analytical determination
of n; from the K| -dependence a somewhat subtle issue.

¢ Tor the longitudinal radius Ry, the lowest order term of the analytic approximation
scheme is insufficient, but excellent agreement. with the exact value of the model-
independent expression (6) is reached at order p = 3 for all values of K. For small
values of |, there is a small discrepancy between this model-independent radius

and the halfl width of C(K, q). We have checked numerically that R, reproduces.

the curvature of C(K,q) at ¢, = 0. The discrepancy can be traced back to
the strong non-Gaussian behaviour of the source (7) in the y-direction. Yet,
for all practical purposes, the model-independent expressions (6) are sufficiently
accurate, the deviation from the half width being of the order of a fow percent.
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Fig. 3. The out HBT-radius Ro(K) for the emission function (7) with linear (top) and
quadratic {bottom) transverse flow profile.

o For the out direction, the lowest order of the analytical approximation scheme
misses the qualitative behaviour completely, and qualitative as well as quantita-
tive agreement is reached again at order p = 3. Also, the Boam::am._um:&mi ex-
pression (6) agrees very accurately with the hall width &. the ooﬂ._.m_mﬁ.wos function
(2). The interesting increase of R, for small K is a lifetime effect which measures
the time variance (¢2) — va_ being the term proportional to mw in equ. a‘v. md«_.
small transverse flows, this is the dominant contribution to the difference R — R?

between the out and side radii. It is non-zero even for systems with freeze-out

on a sharp hypersurface since particles emitted from different points (¢, z) of this
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surface contribute to the correlation function as long as they are seperated by lesg
than the longitudinal region of homogeneity R;. The correlation function probeg
a finite range of coordinate time, At ~ /72 + R — 1y along the proper time
hyperbola 7 = 7;. Ip passing, we note that inserting the old Makhlin-Sinyukov

formula (9) for R, in this estimate of At, one finds At ~ Wﬂo Ahv This allows

my
us to rewrite (12) in the form RZ = R? + 261 At which is the old lowest-order
relation of Csérgé and Pratt.[11] ‘

Let us turn to the results obtained for a quadratic flow profile 7, = :\WM. Again, we
emphasize the main points only [8]:

o For all three radii, the model-independent expressions (6) agree very well with the
corresponding half-width of the correlation function (2).

¢ Compared to the scenario of a linear flow profile, a given flow scale n¢ leads to
stronger flow effects. In general, however, this leads only to quantitative differ-
ences. The only new qualitative feature observed is the rise of R, with K, for
a weak quadratic flow with My = 0.1. This can be traced back to the rise of
the variance in the out-direction, (z2) — (z)? with K. It is different from the
generic decrease of the effective region of homogeneity with increasing K, , and
seems to be due to an accidental coincidence of parameters. It goes without saying

4. Summary

A careful analysis of the transverse momentum dependence of HBT-radii provides cru-

K in the source. Recently heavy ion experiments have begun to provide first quantita-
tive information on this K-dependence.[12, 13] This has motivated various lowest order
calculations of the HBT-radii Ri(K) for specific models.

We have reanalyzed this issue with a combination of numerical and analytical meth-

o%.>50=mm:~5 Ew:%mn&zmm:mﬁom wvoé_s@mgvrmﬂmm_ﬁooﬂ very general impor-
tance: ,

¢ None of the so far suggested simple m; scaling laws is quantitatively reliable,
except for very limited regions of parameter space which are not likely to be
established in experiments. ‘

e For all practical purposes, the model-independent expressions for the HBT-radii
(6) allow for a very accurate determination of the half widths of C(K,q). They
turn out to be the most appropriate starting point for both numerical and ana-
lytical calculations of HBT-radii.

In our work, we have developped in the context of simple models the analytical and
numerical tools for an accurate calculation of the momentumn dependence of HBT-
radii. Our next step is to use this well-defined starting point for the treatment of more

! i 583
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1 i ; d their comparison with
complicated models (e.g. models including resonance decays) an p

eriment.
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