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We give an introduction to Hanbury-Brown/Twiss interferometry in heavy ion
collisions, suitable for students at the graduate level. Its main focus is on the
basic relation between the phase space emission function S{z, K), the momentum
space correlation function C(q,K), and the HBT-radii mwﬁﬂv We discuss in
some detail how the latter can be calculated for a given phase space distribution
S(z, K) of boson emitting sources.

1. Introduction

Many of the open questions in our understanding of heavy ion collisions can be traced
back to the fact that the space-time evolution of these collisions cannot be observed di-
rectly. Especially, while the energy involved in these collisions is measurable by particle
calorimeters, a corresponding direct measurement of the locally reached energy density
does not exist. Hence, a determination of the size and spatio-temporal evolution of the
interaction region has to rely on indirect evidences, the most prominent of them being
Hanbury-Brown/Twiss (HBT) interferometry.

This lecture provides a basic introduction to HBT interferometry. In a first section,
we emphasize the pertinent physical arguments which allow to extract spatio-temporal
information from the measured 2-particle correlation functions. To this aim, we discuss
the connection between

¢ the emission function S(x, K) which is a theoretical concept, specifying the space-
time distribution of particle emitting sources.

¢ the 2-particle correlation function C(K, q) which is an experimentally measurable
quantity.

¢ the HBT-radii mw.ﬁmv which specify a very popular parametrization of C(K, q).
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As it will turn out, the correlation function C(K, q) does not determine S(z, K) uniquel
as long as no (model-dependent) physical assumptions restrict the class of emission ?:nu.\
.So:m E&Q consideration. In the second section of this lecture, such a model-dependent
Investigation is presented in some detail.

2. Model-independent results

Hanbury-Brown and Twiss [1] have been the first to point out that the Bose-Einstein
émé.?%ﬁo: symmetrization of identical bosons can be used for the determination of
the size of boson emitting sources. The idea with which they determined the size of
stars is very simple:

Oozmﬁmw the star as a static source, emitting photons with probability p(x) from
spatial points x. The probability P(p1,p2) of detecting two photons with momenta, P1
and py is then given by the Born amplitude [1;2]* of the symmetrized 2-boson wave
function P12(x1, x2). Choosing a plane wave for 112, we obtain

Poupa) = [ @rxadxap(e)otoe) foalx, x)f

L+ (31— pa) \ Pxp(x) = 1. )

Hence, measuring the 2-particle correlation P(p1,p2) gives direct access to the Fourier
demﬂons A(p) and, a fortiori, allows to specify the spatial distribution of the photon
emitting source uniquely. The crucial point is of course, that P(p1,p2) is directly
measurable while a direct experimental determination of the size of a star is not feasible.

>_.o=m this line of argument, Goldhaber, Goldhaber, Lee and Pais [2] proposed to use
HBT interferometry for determining the size of the pj collision region. More recently,
arm same idea has been applied to heavy ion collisions.[3, 4] The theoretical starting
point is always the same abstraction of the collision region as an assembly of classical
boson (here: pions or kaons) emitting sources in a certain space-time region. However, in
contrast to the simple example of a static bosonic source of macroscopic size given above,
the application of HBT interferometry to heavy ion collisions faces several technical mum
conceptual complications: -

* technical complications: in heavy ion collisions, the bosonic source is strongly
time dependent and cannot be assumed to have the same size for bosons of dif-
mﬁwsn momenta. Hence, instead of a spatial source density p(x), the collision
region is described by a space-time dependent emission function $(z, K') which
generally shows a correlation between the momenta of the emitted particles and
their emission points (so-called z — K correlations).

¢ conceptual complications: the emission function S(z, K) is a classical concept well
Justified for macroscopic sources (e.g. stars). Clearly, the question of whether this
classical concept is just an idealization or an overidealization of a given physical
system can be asked in many different disguises: Is the explicit space-time de-
pendence of S(z, i) adequate for the microscopic distances involved in heavy ion
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collisions? Is the description of the emitted bosons by plane waves or coherent
states appropriate? etc. So far, these concerns have not allowed to replace the
emission function S(z, K) by a theoretically superior starting point. They should
be kept in mind but this lecture does not pursue them further. The interested
reader is referred to the literature, cf. [5] and references therein.

2.1. The connection between C(K, q), S(z, ), and the HBT-radii

The emission function S(z, K) determines the single particle momentum spectrum
via Pi(p) = E,dN/d®p = [d*2S(z,p) = Ep{a*(p)a(p)), as well as the HBT two-
particle correlation function C(K,q) where K = L(p; + ps) = (K., Ky) is the av-
erage momentum over the two particles and q = p; — po their relative momentum.
The latter is given in terms of the 1- and 2-particle distributions Py(p), P2(p1,p2) =
(a*(p1)a”(p2)a(pi)a(p2)) and the average number (N) ((N(N — 1)) of particles (pa-
ticle pairs) produced in the reaction as {3, 6, 7, 8]

NY?  Py(py,
QAUTUMV — A v u@uH ﬁwv ~14+

_%%HMA&_E%PLM
(NN -1)) Pi(p1)Pi(p2) ’

|[ dz S(z, K)|? 4

In the numerator of the last expression we have introduced off-shell momentum 4-
vectors K and ¢ for the total and relative momentum of the particles in the pair by
defining K% = wﬁmm + E,) and ¢ = E, — Ey where E; = /m?+ p?. Here, the
right hand side of (2) can be obtained e.g. by using the factorization P;(p;,ps) =
(a*(p1)a(p1))(a”(p2)a(p2)) + (a*(P1)a(p2)){a” (P2)a(p1)) and the equation

\%amzém?_ K} = /Ep, Ep,{a" (p1)a(p2))

which links 8] the emission function (Wigner function) S(z, K) to the ensemble ex-
pectation value (..). For azimuthally symmetric sources (see below), the connection
between S(z, K), C(K, q) and the HBT-radii R(K) is given by: [11, 9]

|f d*z 5(z, K) mE.s_N

o~ e~ (K)ol - R (K)q2 - R} (K)o? - 282 (K)qoar
_e?t& .m.?fw-v_

CK,q)~1+
(3)

Here, the subscript L denotes the longitudinal or z-direction parallel to the beam, the
out or z-direction parallel to the transverse component of K is denoted by the subscript
0, and the remaining side or y-direction carries the subscript s.

2.2. The spatio-temporal information obtainable from C(K, q)

Let us consider emission functions which are sufficiently well described by the gaussian
approximation [9, 10]

1

Sz, K) ~ §(&, K) e~ 309" @=0) B (K) (4)
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where £ = 2(K) denotes the saddle point of S(z, K'). Doing the Fourier transform ip
(2), we find

QAN.@V & ] +mlAm|—vt:atQ.\
Amluv\:\ (zpzs) — (zu)(zw)

i

I

Note that the time component ¢° of ¢ is a function of q and K due to the on-shel]
constraint of p, and p,: if q is sufficiently small, we have ¢ - K ~ 0 and hence ¢% ~
Bigo+ frqr where B = K,/ Ep. -

In arm.ommm of an azimuthally symmetric source (Le. S(z,K) is invariant under
¥ — —y), inserting the on-shell constraint ¢° ~ B1go+PLqyL in {5) combines the matrix
elements (B~1),, to the HBT-radii as follows: [11, 9, 10]

mw = AQMV.

RS = (2= BL)) — (= - AL1))’,

R} = {(z—But)®) — {(= - But))?,

Fio = (&= But)(z = But) — (&~ Bo0){( — Brt)) (©)

In general, (B~ is a symmetric 4 x 4 matrix with 10 independent entries. The
BWmm shell constraint combines them into § independent HBT-radii: RY(K), R(K),
mlmﬂv, R (K), R2(K), R%/(K). Further, azimuthal symmetry eliminates the side-out,
side-longitudinal and side-temporal elements of (B, and the remaining 7 non-zero
entries combine to the 4 different HBT-radii in (3,6).

The crucial point is: experiments measure the HBT-radii only, and hence they do not
determine the (B~1) s uniquely. In practice, this forces us to make model-dependent
m.mmc_dvﬁocm about S(z, K) if we want to reconstruct S(z, K) from C(K, q). Only for
simple situations like e.g. a static K-independent source, a unique reconstruction of
p(x) from P(py, ps) can be obtained according to equ. (1). o

In heavy ion collisions, the model-dependent assumptions on S(z, K) have to include
dynamical information which Is to a large extent encoded in the z — K -correlation of
S(z, K). This in turn is experimentally wnonmm:u_m via the momentum vamummumm of the
HBT-radii. Accordingly, it is the main task of the theorist to determine the momentum
dependence of the HBT-radii for particular models S(z, K).

2.3. The limited validity of approximation schemes

Given an emission function S(z, K), how does one determine the HBT radii in practice?
The set-up presented above suggests three different approaches:

1. mﬁmzmpm numerically C(K, q) via the Fourier transform in (2). Then, the HBT-
radii are determined by a numerical fit of the gaussian form (3) to C(K, q).

2. Evaluate numerically the model-independent expressions (6) for HBT-radii.
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3. Evaluate analytically the HBT-radii via equ. (2) or (5,6).

Technically, the third possibility amounts to a 4-dimensional integration over S(z, K).
It should not be too surprising that most realistic emission functions S(z, K) are too
complicated to be analytically integrable. Even worse, there is no general approxima-
tion scheme which could be applied to the integration of arbitrary emission functions
S(z, K). This makes analytical calculations of HBT-radii a somewhat subtle issue, to
say the least.

Indeed, various approximation schemes used in the literature have a very small range
of validity. A very naive but popular calculational scheme e.g. is based on a gaussian

saddle point approximation using
7 By (K) = -0,0,In5(=, E_aumﬁmv 7? (7)

for the determination of equ. (4). Here, it is easy to play devils’ advocat: choose
Saevit(z, K) = aénomram@ﬁmv“ and By, in equ. (7) vanishes. Obviously, equ. (7) does
not lead to a meaningful result for this type of emission function. As we shall see in
the next section, Sgeyir i not an academic example but the limiting case of a relevant
theory!

Technically, the crucial point is that (B} (K) in equ. (5) should not be determined
by inverting the curvature of the emission function at #(K), but from the half widths of
S(z, K) which are essentially given by the variance (B~1),, = (z,2,) — (zu){zu). [10]
For all emission functions investigated so far, using this variance in the approximation
(4) of S(z, K) leads to sufficiently accurate results. This is the very reason why we have
coined the terminology model-independent HBT-radii for the set of equations (6).

3. A model for the emission function

In this section, we introduce and discuss a simple and reasonably realistic model in
some detail. We use rapidity coordinates, i.e., z = 7 cosh 7, t = rsinhy and d'z =
T dr d dz dy where 7 denotes the proper time and 7 the space-time rapidity n = w_:m.
We consider the emission function

cuw _ g2 _(mre)?  g?
%A&_NA‘V | Eﬁmlhﬂnalﬂﬂa ﬁb..vumﬁbiu Amv

- (27)34/2n(AT)? !

where K, = (my coshY, K ,0, my sinh Y), Y being the momentum rapidity and m; =

Vm? 4 Nm._.u the transverse mass.

3.1. Physical assumptions entering S(z, K)

Two classical concepts are used in the description of a heavy ion collision region via
Amv. A velocity field w,(z) is associated with every space-time point of the collision
Tegion. Also, we assume that the many interactions taking place in the collision region
€quilibrate the system locally - this motivates the Boltzmann factor e~ % in (8). Fur-
thermore, several parameters specify the extension of the {pion) source: R describes
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the finite radial extension in the transverse coordinate » = 3_ the length of the
rapidity interval containing the source is specified by Ap, and we have introduced a
finite duration At of the emission time centered around the proper emission time To.
Finally, we have to specify the explicit form of the velocity field, eg., o
z . y . . r

u, (z) = (cosh iy cosh 7, = sinh 7, - sinh #;, sinh 5 cosh ;) § m(r) = :HM - (9)
Clearly, there is a considerable freedom in the choice of u,(z). The main point is to
use an expression which includes both longitudinal and transverse expansion, the latter
being supported by the experimentally measured transverse momentum spectra. [12] In
(9), the longitudinal velocity component shows Bjorken expansion, and we have used a
linear transverse velocity profile ne(r).

The emission function (8) has five free parameters: R, AT, Ay, 79, and 75. These
have to be determined by a simultaneous fit to the measured normalized 1-particle
distribution Py(p) = [d*2S(z,p) which depends on R and ny only (the other param-
eters contribute to the normalization only), and to the HBT-radii (6) (which are four
K-dependent functions!). Clearly, the 1- and 2-particle distributions provide sufficient
information for either determining the set of parameters uniquely or excluding this type
of model. A comparison with experimental data will be carried out in the near future.

More detailed physical assumptions could be included in the model (8) in various
ways. E.g., one might test how the predictions change if the temperature is taken to
be a space-time dependent quantity T(x). [13] In the more conservative approach we
advocate here, one investigates the physical relevance of models with a minimal set of
parameters first before introducing additional fit parameters.

3.2. Calculating HBT-radii for a concrete model

The study of simplified models allows to test technical tools and may reveal in great,
clarity important physical features which persist in more complicated models. A very’

interesting simplification of (8)[14]is obtained in the limit A7 — 0, &n— 003

Sz, K] = Do SRV - Byl e ?.lﬂov. CS

(2m)®

Physically, this limiting case amounts to the highly idealized assumption that all parti-
cles are emitted from a sharp freeze-out hypersurface at 75 and that we are dealing with
a longitudinally infinite boost-invariant system. This invariance property is known wm
Bjorken scaling. [15] For (10), HBT-radii have been calculated [10] with all three meths
ods described in subsection 2.3. Especially, an analytical approximation scheme has
been developped which allows for a convergent order by order expansion of the Em.ﬂl
radii (6). The lowest and next-to-lowest order results reproduce various statements 1
the literature. However, higher order corrections turn out to be non-negligible (the.
Jowest order is not necessarily the leading one!). In general, only at third order, the

*The devils’ advocat argument following Eq. (7) can be made e.g. with an emission function (10) and

a quadratic transverse flow n¢(r) = dxwm.nl. for small momenta K.
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numerical and analytical expressions for (6) agree within sufficiently small errors. One
has to conclude that the previously published lowest order results obtained from naive
approximation schemes as e.g. (7), are both qualitatively and quantitatively unreliable.
Here, we emphasize two major technical points only:

For the model (10), a lowest order calculation of the HBT-radii (6) leads to [16, 11]

mw = ﬂmh mw —_ mwlw + WAPVHQM 72 .mm ] R . Aﬁ:
f=dor Rerrma i) A R ok

These results have been obtained for a particular Lorentz frame, the longitudinal co-
moving system (LCMS), in which Y =0, 8, = 0 for all pion pairs.

Higher order corrections change (11) for the longitudinal radius e.g. to

N.ww oY \nex%ﬂ%lmml " ‘\.09.1 = wu A_—Mv
my
where the correction factor f.,.. depends on the size of the transverse flow. Hence, if
one wants to extract the emission time 1y from the measured radius R (K), an accurate
higher order calculation is indispensable.

Also, important higher order corrections occur for R, in (11). Here, let us draw
attention to the $2-term in RZ(K) which can be traced back to the 3 -dependent
time variance (12) — (t)? in (6). Typically, this leads to a quadratic increase of R2(K)
for small momenta K. However, numerically the rise is given by a smaller coefficient
than in (11), and the difference R} — R? saturates well below 173(7/m;)? as might
be expected optimistically. For further discussion and technical details, we refer to the
literature.{10]

3.3. Some final remarks

Clearly, the model (10) is too simple to be compared to experimental data. However,
it provides a testing ground for technical and interpretational ideas. This lecture is
not able to exhaust even the most important of them. The reader is invited to consult
the literature or to investigate some of the important questions himself: e.g., is it
Possible to extract the time variance (t?) — va from the measured HBT-radii? How
far is this determination model-dependent? How could one include pions coming from
resonance decays? Which physical features can be expected to survive in this case,
which will be washed out? etc. These and many other issues had to be omitted in this
short introduction, but people have begun to discuss them in the literature. For the
experimental heavy ion program which has stimulated a large part of the theoretical
investigations presented above, we refer to the lectures of C. Fabjan and E. Quercigh
in this workshop.
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