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INTRODUCTION TO WAVELETS AND APPLICATIONS TO
CORRELATION MEASUREMENTS!
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We discuss discrete orthogonal wavelet transforms and some applications to sta-
tistical and multiparticle physics.

1. Motivation

In multiparticle physics useful tools, such as factorial moments, cumulants, corre-
lation integrals, void probabilities and combinants are currently explored and to some
extent applied to the analysis of data. These correlation measures elucidate many in-
teresting features of higher order correlations but share one common drawback: they
rely on local hadron multiplicities and, hence, are not infrared stable. More precisely,
the above mentioned measures depend crucially on the number of particles, so that it
makes a big difference if a certain amount of energy is carried by one particle or is
distributed over few nearby particles, say, a cluster.

For the design of infrared stable observables it is desireable to abstract from particles
and find ways to characterize a ”cluster” independently of the number of particles it
contains. In other words, we seek strategies to smooth over the discrete nature of
clusters in a fair and simple way. Wavelets are natural candidates for such strategies.

Orthogonal wavelets define a multiresolution representation of a signal, e.g. a col-
lection of particles (points) in phase space. In a sequence of ”local smoothing” and
”differentiation” operations, the signal is decomposed into contributions from clusters,
composed from clusters at smaller scales, which are in turn built from clusters at again
smaller scales, and so on. Thus, wavelets provide a strategy to select clusters living only
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at a specific scale. This property raises hopes to tame the infrared problem ubiquitoyg
in conventional correlation studies.

Unfortunately the language used to describe the wavelet transform is often involved
and repelling for physicists. As a consequence, this community has hardly discovereq
the power of wavelets yet. For this reason we would like to give a simple introduction
to the basic ideas tied to the wavelet transformation and the related concept of g
multiresolution analysis. Additionally, we point out some applications.

2. Multiresolution decompositions and wavelets

Multiresolution decompositions chop up a signal into (not necessarily) mutually
orthogonal contributions from nested sequence of scales. This chopping can be done
by very fast algorithms which implicitly define and use wavelets. We explain the basic
ideas by means of the familiar concept of histograms, giving rise to the simplest member
of the wavelet family, the so-called Haar wavelet, known since beginning of this century.

Let us approximate an arbitrary one-dimensional function ¢(z) in terms of a sequence
of histograms, each having 2/(j = 0, .. ., J) bins; see fig.1 as a guideline. The binsize 2-7
defines the scale or resolution of a, particular approximation. In principle the resolution
J 1s allowed to go to +o0o, but in all practical applications we assume that the function
€(z) is known up to a finest scale J, which may be dictated by the resolution of the
measurement device.

Fix a particular bin k of a histogram at scale j with bincontent €x;-obviously any
structure or fluctuation narrower than the binsize 277 is smoothed out. At the next
finer scale j + 1 the same structure is resolved by two bins and in most cases the first
one will differ from ¢, by an amount €x; then the second one deviates by —¢& from
the average. In this way, an arbitrary fluctuation within the bin & is captured in the
difference information &, up to a resolution 2-G+1) Obviously this procedure can be
iterated to finer and finer scales, dissecting an arbitrary fluctuation into independent’

contributions from different scales 0 < j < J. If such a fluctuation at a certain scalé 3

is large (i.e. has a significant &) we shall generously refer to it as a ”cluster living ‘at
scale j”.

This procedure defines the simplest case of a multiresolution analysis [1]. The signal ,

€(x) can be represented by a sum of independent contributions with finer and mzmu
detail information (the functions in the right column in fig. 1), each one omve:a:m.,os,q
those fluctuations that live between two adjacent scales. e

Wavelet theory starts with expressing the above scheme in a more fancy way:. the
histogram at finest resolution scale J is now written in terms of 27 box functions
&W»?.v = ¢H (22 - k), each representing one bin with width 2=7 and position k& =

0,...,29 —1. They are constructed from the unit box function, the so-called mo&.%m
function, .
1 for 0<z<1 0
H _ G H oy < 1
¢ (z) = $oo(z) = A 0 else ( )

by a dilation with contraction factor 2=7 and a translation (shift) by an integer k. The
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Fig. 1. A multiresolution decomposition of a random signal (upper left corner) at resolution
J = 5. The left column of histograms shows a sequence of smoothed approximation while the
right column represents the orthogonal Haar wavelet decomposition.

histogram of the function e(z) at the finest scale J is then written as a series:

e(z) = () = 3 (), (2)

k

where m‘m.: = [e(z)¢H (z)dz is the content of the k-th bin at resolution J.
The above outlined multiresolution analysis is formalized by the series expansion
into contributions é7)(z) from different scales (compare with Fig. 1),

mCZi = ma:e:MMmcv?v .

J-1
coodgn(z) +ice Li=o m?ﬁh»ﬁi.

3)

fl

with

G =2 \AHEN?.?.. (4)
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MWMO %wmwa m:wv:m:amm €% are most conveniently represented in a one-dimensiona]
€00, €00, €10, €11, €20, ..., €23,...,E5_1 ¢ € ith 27 bi
. s € 1€23, -+, €J-1,0,- .., €51 35-1_;) with 27 bins.
mmaﬁmrﬂn are ga.gma functions ﬁﬁ (z), that make such a serjes expansion possible?
ply by Emﬂmoa._o: of fig. 1 one can deduce that they have to be dilated and translag Q
coples of a unit difference function, SMM (z) =9 (2 - k) with °
1 for 0<z<1/2
" <
P =fh(z) = ¢ ~1 for 1/2<z<1 (5)
0 else

Note that the functions ﬁwm (z) are orthogonal with respect to the shift index & and the

dilation index j: 2791 [ yH (y)o,Hl
bion ownmx J: m_w &@?ES%»A&EH = 8jjt, O
o o Ogonai basis was introduced by Haar in the early 1900’s, in todays langua,
t M .ﬁ&. i (z) are called ”Haar wavelets” . The major breakthrough in wavelet nrmo% SMM
MM leved wu\. Em:mﬁ. and Um:v.mnrmmm {1, 2] in the late 80’s, when they showed that the
o nw\o mu .Snmmo_:son. expansion can be based on more general functions with nicer
athematical Unowm.;_om than the Haar wavelets (which are discontinuous and cons
quently, badly localized in Fourier space). M -
_KOHM %Q.umnm:vn .Om:vmormmm constructed several families of wavelets and associated
scaling functions, which are orthonormal, have compact support and are at least con-

t nu S or I smo ~\~ g HML 1 _ Yy
mes Q €
1 Oous or eve, ot € A eve t Hm H®=ﬁ~W~u~0v & » HT@ are mor.nﬂnozm Om ﬁTO

é(z) = Mniﬁme —k) and
k

¥(@) = Y (=D ersd(2e — k) . (6)

k

o:owbmﬂﬂmwmm mwmowmwwﬂo: of Emmm.m@:maoa can be found numerically by iteration,
il divergs clents ¢ is given. However, for most choices of ¢; the solutions’
mo_:www ._U_HM M:MMMM@ %MW:MMM Mro Haar wavelet AS represent the simplest convergent
ol Nmno,_ y only two coefficients: ¢y = ¢1 = 1 and all the others

Hwﬂm next m:~:u~®~ ﬁroc,mmw m:mwlt :Oh—ﬁﬂ—(ww\—; converge O VGlv nonva
ﬂm nt S ~Cﬂ—0- m O_ €S M.OCN.

1 1
o= 7(1+V3), ¢ =2 =2 -

AA vg (5] %ﬁw:*l/\wy OMINAwl/\WV. nm”MAH|/\WV.
”wa_:m to _n:m nouSH.Eo:m and orthogonal Daubechies D4-wavelet. These and many
mswnw wavelets are <_m:m_§om. eg. in [2]. Their construction represents a beautiful

Ingenious piece of applied mathematics. Generally one has a trade-off between
compactness (length) and smoothness of a wavelet: the smoother the wavelet becomes

(and, hence, the better it j i in Fouri
o hen er 1t 1s localized in Fourier space) the broader the compact support
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As a generalization of the multiresolution analysis presented for the Haar wavelet
before, the equations (2)-(4) and (6) define a multiresolution analysis for any specific
choice of wavelets. The resulting ”histograms” at the various scales are not step func-
tions, but acquire the degree of smoothness of the underlying wavelet.

In the literature many defferent wavelets with various additional properties have
been constructed: biorthogonal wavelets, symmetric wavelets, wavelets on a closed
interval, wavelet packets, ... . For a good survey about these extensions we refer the
Interested reader to the books of Chui [3], Kaiser [4] and Meyer [5]; confer also the
second edition of ‘Numerical Recipes’ [6].

3. Some applications in (statistical) physics

The overwhelming success of wavelets in signal analysis is founded in its ability
to extract and analyze efficiently local details living on a hierarchy of scales. Hence,
the wavelet transformation appears to be extremely attractive to study and describe
complex reactions in general, especially those exhibiting texture and patterns involving
multiple scales. In particular, the self-similarity aspect is eye-catching; hence, the de-
scription of hierarchically organized (stochastic) complex reactions should be facilitated
tremendously by wavelet transforms.

In order to elucidate this last point we begin with a simple example [7]: Consider a
smooth Gaussian function with a small selfsimilar (multifractal) noise added; see inset
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Fig. w‘. (a) Spatial two-bin correlation density Pk, k, and (b) the corresponding Haar-wavelet
correlation density B(jk,)(jks) for the p-model cascade. )

of Fig. 2a. In a conventional multifractal analysis this distribution is first expanded
according to (2) into (Haar-) scaling functions ¢k belonging to scale j; then the scaling
behaviour of the partition function

NQQ - wi.v H, MU _mm;a Z.ali Ad
k

in studied. Since the amplitudes mm ) reflect absolute values, this scaling approach
1s quite insensitive to the small selfsimilar noise as the large Gaussian background
function dominates. Hence, 7(q) = TGaussian(g) = ¢ — 1 only reveals the trivial scaling
properties of the smooth Gaussian; see Fig. 2a. On the orther hand, the (Haar-) wavelet
expansion (3) focuses on differences between neighbouring parts of the distribution. As
a consequence, the smooth Gaussian background drops out for small scales £ and the
wavelet amplitudes €4 are only determined by the selfsimilar noise. Hence, the wavelet
partition function

Wyt =277) = 3 | & |9 690 ®
k

leads to scaling exponents #(q) = Tnoise(q) for small £; for large £ the Gaussian behaviour
takes over again and we find 5(g) = 2¢g — 1. See Fig. 2b. Here the wavelet approach to
multifractality reveals clearly the two different scaling regimes whereas the conventional
multifractal approach is incapable to detect and isolate the fluctuations at small scales!

Another, more dynamical, example: So-called weight curdling models have been
proposed as phenomenological descriptions of intermittent spatial fluctuations in fully
developed turbulence [8, 9, 10]. Some of these models have also been used to simu-
late fluctuations in e*e~ - and hadron-hadron collisions [11, 12]. Fig. 3a shows the
spatial two-bin correlation density Priks = {(€k, . €4k,) of the so-called p-model; it has
been calculated analytically in ref. [13]. The power-law rise towards the diagonal is a
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clear indication of the selfsimilarity of the hierarchical p-model cascade: the closer two’
bins are together, the more they share a common (cascade) history and the stronger
they are correlated. This representation of the correlation density is based on the
monoscale expansion (2); it is not an optimal choice since it does not take into account
the hierarchical organisation of the process. Here, the wavelet representation (3) is the
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better choice. In fact it turns out that the second order wavelet correlation density

Plirky)(Gaka) = (€ 1k €5ak,) 18 completely ”compressed” into the diagonal (see m.wm.vwrv. ,

the Haar-wavelet amplitudes €j,k, have been ordered according to

M = Ammov moc mpo“m: mwo - - v g
3 ) 3 3 yCJ—1,27-11y
= (fo,81,2,88,84,. .., 630_,) . @
All off-diagonal elements vanish and the staircase behaviour of the diagonal o_oimi
w.m<om~m the same power-law behaviour (indicating selfsimilarity) as found in the ooE@M
tional correlation density Pk1k, across the main diagonal. Definitely we have benefited
here from the compression power of the wavelet transformation, which makes it such 3
powerful tool for signal transmission.

There is still more to gain: In analogy to the analyzing power of €m<m._3m 1n sig-
nal m.sw_%m.wm (?what frequencies come at what time?”) higher order wavelet no:&maowm
an.:mm direct information on how substructures living inside larger structures are or-
ganized T&w in particle physics we would speak of correlations of subject within jets
whereas in turbulence or astronomy it would be subclusters inside clusters (coherent
structures). In this sense higher order wavelet correlations are extremely sensitive to
the dynamics of the complex reaction under Investigation.

4. Multiscale clustering in two-dimensional branching processes

..Ho illustrate and visualize multiscale clusters in more detail, we consider hierar-
&:o&. mebwrwsm processes in two dimensions [14]. As a representative we take the
?6-950«555& a-model since it is easily generalized to two and higher dimensions.
One ﬁOmEEm realization of the two-dimensional a—model is shown in the :meﬂ_mm
corner of Fig. 4. We have used a gray scale to indicate the population of regions in
between _m.ﬁmm energy densities (white) and small energy densities (black). We observe
nrﬂ certain regions clump into clusters of various sizes while others are more or less
void. .

. To @mm:ﬁ@ this picture, we explicitly perform a multiresolution decomposition sim-
:m.ww to Fig. 1: First the energy densities at the finest resultion scale J = 6 are smoothed
sir. a.rm D12-scaling function on the next rougher scale j = 5. These averaged energy
densities are depicted in Fig. 4 as the second figure from the top of the left column.
Some m.mﬁm: about the subclustering occurring between the involved scales is obviously
_Ommw this lost information can be recovered by keeping the difference between the reso-
lutions j = 5 and j = 6, illustrated in the top of the middle column. These smoothing
and differentiation operations are iterated through scales 7 = 4, 3 down to 2.

. Hro left column of Fig. 4 shows density plots of a sequence of D12-smoothed approx-
imations to the original configuration, whereas the middle column represents density
plots of the wavelet transform, which form a sequence of mutually orthogonal details.
In order to provide a better picture of the subclustering aspect of the wavelet transform,
the details at various scales are exhibited again in the right column, but with two gray—
values only: black for regions with negative values of the detail function, indicating
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Jocal voids, and white for regions where the detail function is positive, signaling the
appearance of clusters at the various scales.

The borders between white and black regions in the right column of Fig. 4 are
the zero—crossings of the wavelet transform. These serve as a natural definition for
multiscale cluster boundaries. Fast algorithms exist [15] to detect these boundaries.

5. Outlook

All these observations let us hope, that the successive ”smoothing” operations of
the multiresolution representation, if defined analogously to conventional cluster- or
jetfinding algorithms, might facilitate comparisons of experimental cluster correlation
studies at hadron level with theoretical calculations of parton shower models. We expect
that the ”clusters” arising in the wavelet transform do not depend on the details of the
hadronisation process at small Q?, at least at large and intermediate scales, thus taming
the infrared probléem inherent in conventional correlation studies. Of course, these hopes
and expectations remain to be verified by further numerical analyses of more realistic

cascade models.
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