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‘ Recently the Wigner function formalism has been applied to the superposition of
two coherent beams in a three-plate perfect crystal neutron interferometer of the
e Laue type. Here we describe the beam superpositions in a four-plate neutron inter-
i ferometer by means of Wigner’s quasi-classical phase-space representation method.
8 We consider the case of equal distances between the plates having equal thickness.
Three independent phase shifts cause intensity oscillafions at the rear surface of
the interferometer as it was observed experimentally. We are dealing with the
forward beam behind the interferometer which is a superposition of three partial
beams each of them being twice transmitted and twice diffracted. The three partial
beams are described by wave packets. The Wigner function of the superposition
state is constructed, it consists of three single Wigner functions due to the three
partial beams and of three interference terms. By integrating alternatively over
the space and momentum coordinate the spectra of momentum and position are
. obtained respectively. The position spectra exhibit typical Schroedinger-cat-like
G states whereas the momentum spectra reflect a strong oscillatory behaviour. Using
¥ these spectra one can calculate the mean square deviation values of position and
momentum which exhibit squeezing effects depending on various phase shifting.
It can be shown that in a four-plate interferometer squeezing can be almost twice
as big as in the three-plate interferometer. The smallest value of the mean square
deviation of momentum can thus be nearly a quarter of the coherent state value
t of a single minimum wave packet. These highly non-classical states are made by
i the power of quantum mechanical superposition principle.
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1. Introduction

In recent papers [1-3] the Wigner function has been introduced in neutron interfers
ometry in order to discuss the spectral distributions of momentum and position of the
neutrons depending on the action of a phaseshifter. In such a three-plate Laue-type
interferometer the quantum mechanical superposition of two wave packets has beey.
considered. It could be shown that squeezed states are possible, leading to mean square
deviation values of the momentum distribution which are considerably below the co
herent state value of a single minimum wave packet. In 1988 the four-plate neutron i:
interferometer has been discussed theoretically and experimentally [4]. Here we refer to
that paper. We want to investigate the momentum and position spectra of this device
using the phase-space representation of the Wigner formalism as well.

2. Four-plate neutron interferometer; notations

In Fig. 1 a sketch of the four-plate interferometer is shown. We consider the forward
beam B0 which is the only one built up by the superposition of three wavefunctions of
equal amplitudes in an empty interferometer. This is the most interesting case because
a 100% contrast can be attained.

Em.H.moca-vgmomsmcﬁocmnﬁowmmwoamnano:ﬁo Qumnmvrmmwmrm?mnmwx\»wnmxm
are phaseshift loops (see text); Ipq is the intensity of the forward beam. :

Two loops of phaseshifting can be distinguished: Xa = oy + B2 — B3 — ay and
XB = fi1 +v2 — 73 — 2. Phaseshift a; for example can be expressed by a; = kpQa,-
The quantity ko (=27/Ag, Ao = mean wavelength) denotes the mean wave number
and A,, can be expressed by Ay, = Awﬂ\\aoxbwa_\byov. Dp, is the thickness of
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the phaseshifter o; and D), is the so called lambda thickness (D», = \no\g;av_ N =
article density and b, = coherent neutron scattering length). A,, can be interpreted
Mm the spatial shift of the wave train in relation to the reference beam.

The four-plate interferometer produces three distinct beams I, Il and III composed
of the following spatial shifts: Ay = Aq, 4+ Ag, + Ay, Ajp = Aq, + Ap, + A, and
Aqrrr = Bay+Ap,+ Ay, or (Ar—Aqr)ke = xB, (A1 —Arr)ko = (xa+x8) = xap and
(Arr — Arrr)ko = xa. Furthermore interference order parameters are defined through
ml=Ar/ Ao, m2=Arr/X and m3 = Aryr/fAe.

The wave function ¥(z,t) is described by using the concept of the wave packet:

P(z,t) = /\IW.IIm ,\louo a(k) expli(kx — wt)ldk (1)

The frequency w = hk2/(2my) and my is the mass of the neutron. The normalized
Gaussian momentum spectrum a(k) (peaking at k = ko) is given by (6k = mean square
deviation)

o= ize] |- () e

3. Superposition and Wigner function

In direction BO the superposition of the three wave packets, each of them being
twice transmitted and twice diffracted, is given at the rear surface by

Ypo(z, t, AL Arr, Arrr) = Yz + A t) +¥(z + A, t) + (= + A, t) 3)

The momentum spectrum apyp is obtained by the inverse Fourier transformation of
Eq.(3) using Egs.(1) and (2):

apolk,Ar, Arr, Aqrr) = alk)[exp(ikAr) + exp(ikAgr) + exp(ikA1r)) (4)

The calculation of distribution functions of momentum and position (see section 4)
is conveniently performed in a formalism using the Wigner function W, with specific
emphasis on Gaussian wave packets [5]. The Wigner function itself depends both on z
and k. In a four-plate interferometer (pure states) Wgo = Wao(k,z,t, Ar, Arr, Arrr)
and can be written in the following manner:

H o0
Wgo = —

21 J_ o
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After insertion of Eq.(3) the result is

Wpo = W) + Wa + W3 + 2[cos(Kxp)W12 + cos(K xap) W13 + cos(K x.a)Was] OF
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Fig. 2. Wigner functions for a)ml=m2=m3 =0, b) ml1=0,m2 =25 m3 = mo ;

¢) ml =0, m2 = 50, m3 = 100.
The following abbreviations have been used: W1 = W(k,z+Ay,t), W, = Wik, z+

Arn,t), Wa = Wik,z + Argr 1), K = k/ko, W,
A , 1ty B = Kfkoy, Wiz = W(k,z + (Ar + Arr)/2,1], Wi =
MM.\AF.H.MAD~+D~:V\NW t}and Wyy = SQQ.H._.AD:.TD:.L\N&. The Wigner function -
a single wave packet is defined by (v = hk/my is the group velocity of the neutrons) -

k — ko)?
- Masﬁw —20k) %z — vt)? (7)

In Figs. 2a-2c Eq.(6) has been visualized for time ¢ = using different interference
order parameters m1, m2, m3 and ¢ = (0k/ko) = 1%.

Wik, z,t) = me_u
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4. Distribution functions and squeezing

The distribution functions and the intensity can be expressed through the Wigner
function. The calculation of the momentum distribution ||apel)? is easily performed by
integrating Wpq over the space coordinate x. One obtains

[leso||? = o?(k){3 + 2[cos(K xB) + cos(Kxagp) + cos(Kxa)l} (8)

Consequently the intensity Ipg is obtained by integrating Wgo over = and k:

Ipo = 3+ 2[e™"X2)" /2 cos(xp) + e~ (7X45) 2 cos(x 4 p) + =X 2 cos(xa)]  (9)

The position distribution |jtpo||? can be obtained by integrating Wgg over k. For
a four-plate interferometer we are now able to determine the mean square deviation
expression ((Ak)%)po = (k?)po — ({(k)po)? in which case (k)po = [ [k*Wgodzdk and
i=1,2. Finally we have

Ak)?)po 4 (Ipo
m|8|\wﬂw|u7ﬂ - A+B+2C (10)
The following abbreviations have been used:
A=EBCp+ EapCap + E4Ca,
B=(EpSB)?+ (EapSan)® + (EaSa)?,
C=EpFEspSpSap+ EBEaSpSa + EapEaSapSa,
Ep = exp[~(ox5)?/2], Eap = exp[—(0xap)?/2], Ea = exp[—(ox4)?/2],
Cp = (oxB)*cos(xs), Cap = (6xaB)? cos(xap), Ca = (ox4)? cos(xa),
Sp = (oxB)sin(xp), Sap = (oxaB)sin(xa), Sa = (oxa)sin(xa)-
In a similar manner the mean square deviation expression of the space coordinate can
be determined. In Fig. 3 Eq.(10) is presented graphically (bottom) and compared to
the case of the three-plate interferometer (top, [2]).

i
I

I
[

5. Discussion

The Wigner function Eq.(6) depends strongly on the interference parameters ml, m2
and m3 (Figs. 2a-2c). For ml = m2 = m3 = 0 the three interfering beams have no
mutual phaseshifts and consequently the Wigner function is merely a double Gaussian
Peak as shown in Fig. 2a. In Fig. 2b the three wave packets begin to separate (ml =
0,m2 = 25,m3 = 50) and the Wigner function is considerably squeezed relative to
the K = k/ko - axis. Fig. 2c (ml = 0,m2 = 50,m3 = 100) shows that the three
Wave packets cause the Wigner function to exhibit a strong oscillatory behaviour and
are separated distinctly in space (Schroedinger-cat-like states). Eq.(8), the momentum
distribution function which results from the Wigner function, reflects this oscillatory
behaviour as well. The squeezing of the Wigner function mentioned above manifests
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itself in the mean square deviation expression of Eq.(10). In Fig. 3 (bottom) th
expression is visualized for the special case Xa=xp=X/ocand o= 1%. A minimuny
of about 0.28 at X — 7/2 can be observed which is actually more strongly beloy
the coherent state value of a single minimum wave packet (value 1.00) than that of
three-plate interferometer (minimum = 0.48, Fig. 3 top). . :
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Fig. 3. Comparison of m. squ. dev. of momentum for three and four plates;.
o =08k/ky = 1%, XA = XB = x; maximum squeezing appears at X — X0 =x/2.
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