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We show that the motional quantum state of a particle moving in an arbitrary
one-dimensional potential can be determined directly from the time—dependent
position distribution. The sampling functions are the derivative of the product of
the usual eigenfunctions and the linearly independent { nonnormalizable )} solutions
of the Schrédinger equation.

1. Introduction

Since the first experimental demonstration by Smithey et al. [1] the reconstruction of
the density matrix of an electromagnetic field from the measured quadrature component
distributions in balanced homodyne detection has attracted much interest. Several
theoretical studies developed algorithms to reconstruct the density matrix elements in
the Fock basis directly by sampling the quadrature component distributions with so-
called pattern functions, see {2,3,4] and the literature cited there. Recently it could be
shown [3,4] that these pattern functions have a quite simple structure. They are just
proportional to the first derivative of the product of the usual (normalizable) solution
(energy eigenfunction) and a second linearly independent (nonnormalizable) solution of
the Schrddinger equation of the harmonic oscillator.

Note that the measured quadrature component distributions are nothing but the time-
dependent position distributions of the fictitious harmonic oscillator associated with the
quantized electric field. Thus the question arises whether or not this result is restricted
to the motion in a harmonic potential. As expected it turns out that the general
structure of the pattern functions applies to the motion of a particle in an arbitrary
one~-dimensional potential as well [5,6], as we now will show. In doing so we generalize
our treatment in [6] to nondiagonal pattern functions.

One-dimensional problems are of interest, not only as the quantization of a single
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mode electric field relies on the one—dimensional harmonic potential but also because
after some appropriate manipulations, in a variety of problems one is led to equations
motion which correspond to the one—dimensional Schrédinger equation. As one examp)
we mention the diatomic molecular vibrations [7]. Moreover we note that proposals tg

measure the time-dependent position distribution of an ion in 2 trap have been mad,
[8,9].

2. Spectral decomposition of the time-dependent position distribution

Let us consider the wave packet of a particle of mass m moving in a one—dimensiona]
(real) potential V(z). The probability P(z,t) that the particle described by the density
operator ¢ can be found at time ¢ with position z is given by well known expression

P(z,t) = MU Omn Um (T) un(z) expli(wnp ~ wm)1], )

m,n

where the functions u,(z) which can be chosen as real functions [10] form an orthono
mal set of energy eigenfunctions of the time-independent Schrodinger equation

mmzz?\.v = T\Aev Ima_ un(z), (2)

belonging to the scaled energy eigenvalues ¢, = (2m/h)w,. Here we have adopted the
notation U(z) = (2m/h*)V (z) for the scaled potential. Omn = (Um|blun) are the dens
sity matrix elements in the energy eigenstate basis. In all that follows we assume that
the potential V(z) is asymptotically increasing on both sides faster than some positive
powers of the modulus of the position. This restriction upon the potential guarantees’
the presence of only a discrete spectrum of energy eigenvalues. From a practical point of
view it is also sufficient to suppose that for arbitrary potentials only eigenstates of th
discrete energy spectrum are excited so that we may consider these states as a complet
basis for our purposes. i
It is known that the energy eigenvalues belonging to the discrete spectrum of the one>
dimensional Schrédinger equation are nondegenerate [10]. Since the Schrédinger equa
tion is a second-order differential equation to each normalized eigenfunction u,(z) o
the discrete spectrum there exists a second linearly independent solution v, (z) to th
same eigenvalue which is, however, not square—integrable. For this reason it must be:
rejected as a physical state. However, as we will show, the nonnormalizable solutions
play an important role when reconstructing the quantum state. . e
Our object is to determine the density matrix elements Omn from the given time-
dependent position distribution (1). We note that all parts of P(z,1) are either constant- \
in time or else oscillate harmonically with the difference frequencies w,, — w,,. More-"
over, each density matrix element contributes only to one particular difference frequency :
component. Clearly, a spectral decomposition of the probability distribution P(z,) re-

duces the number of density matrix elements we have to determine simultaneously

from a given difference frequency component. For this reason we multiply P(z,t) by

exp[—i(w, — w,)t] and average over times T that are large compared with the periods
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f all difference frequencies occuring in the expansion (1). Doing this we immediately
o
find
H k
Plz;ws — wy) = % [ dt P(z,1) exp[—i(ws —w,)t] = Yo Omn um(T)un(z)  (3)
0
for T > max (2n/|wp — wm|) with wm # wa; Y~ indicates that the sum is taken over
o_._ those values of m,n which fulfill the frequency condition ws — wy = Wn — Wm.
WnWa that in the case that all difference frequencies are =o=&mmo=m~.w$.“ in principle,
w%mn a sufficient long observation time T' the nondiagonal density matrix &.mEmsn ors
is directly proportional to ﬂ?wEa — wr). In general, however, mo<w§_ amzm.zw matrix
MmBonem contribute to P(z;w,—w, ). In particular, all diagonal density matrix elements
contribute to the time-averaged position distribution P(z;0).

3. Pattern functions, biorthonormality relation and differential equations

The reconstruction of the density matrix elements gm, from P(z; ws = wyr) requires
a set of pattern functions fi;(x) which is biorthonormal to the functions um (z)un(z),

i.e. &

\ dz U (2)un () frr(2) = Omk Ot s (4)

-0
where m, n take on all values which met the frequency condition wm —ws = wr —w, or
equivalently the energy constraint

Em —En = Ep — E5. (5)

As a result the density matrix elements in the energy SEm.mmE.wSos can be determined
from the spectral components (3) of the position distribution P(z,t) by the formula

iy = \. " 4z Pla,ws — w) fuls). (6)

Next we propose to show that the functions fii(z) are the mwmm mﬂ?mm?om of the prod-
uct of the usual energy eigenfunctions ug(z) and the mmnoz.m linearly Eamvﬁawa ?omo
square-integrable) solutions v (z) of the Schrodinger equation va The E.owm is base
on the fact that the product Yma.(z) = Qaﬁavﬁaﬁnv of two m._..gﬁnm.@ solutions yk(z)
(square-integrable or not) of the stationary Schrodinger equation (2) obeys the follow-
ing ordinary differential equation of fourth order

&u
LlYmn(2)] = AWW — 22U (z) ~ (en +em)l 55
ImQ\Ava - MMQ:AHV —(en — mivw_v Yinn(z) = 0, @

as can be easily verified. Here we have introduced the notation U’(z) = (d/dz)U(z).
The corresponding adjoint equation reads

A m & m ||
HTE?Z = AM&A — 22U (z) — (e +m»:mm.nim I wQ\?va +Am~lm$ v Nzﬁilo.ﬁwv
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Next we specialize Y, (z) to the functions in terms of which the quantities ﬂ?ﬁ Ws —wy)
are expanded in Eq.(3), i.e. we put ,

Yorn (&) = t(2)ttn (2) =t (2) ©)
Now we multiply Eq.(7) for ymn(2) by zx(z) and the adjoint equation (8) for 2k (z)
bY Ymn(z) and subtract one from the other. Utilizing the shorthand notation y)
ES\RGSVQ?Y J=1,2,... we obtain :

d

mmm_hw (@) + [(em — €n)? — (ek — €1)*1Ymn () zr1(2)

&w &m . 7
= —2(em +&p) zxi(z) MMMQS:AHV + 2 (ex + &) Ymn (2) MMMB& (z). ﬁoy

Here the function F¥! (z) is given by

Frn@) = 2y —umn 20 — 20000 + 20000
—4U(2) (211 U8 ~ Ymn 25371 = 2U" (%) Y 281 - @i

Then integrating over all z, in doing so the first integral on the rhs. of Eq.(10) by parts
two times, and assuming that the asymptotic behaviour of the involved functions zi{z)
ensures that the boundary values vanish we get

(e = en)? = e = 0] [ doma(2) 2(2) =

oo 2
20en+e) = (em+n)] [ domn(e) syl

In fact, as we will see later on zki(z), Eq.(19), involves the product of at least one nor-:
malizable and at most one nonnormalizable solution. Thus the structure of the relevan
terms even in the most unfavourable case, being the product of three normalizable so-
lutions and one nonnormalizable solution, leads to the supposed asymptotic behaviour
Now restricting the integers m,n, k and [ such that

Em —€n = *(ex — &),
we immediately obtain

00 &w
dzT Ymn () %Nﬁﬁev ; (14)

0 = [(ex +€) ~(em + m:z 4\

—00

Clearly, the integral in Eq.(14) can be different from zero only in the case that £, +¢ =
Em + €n. Collecting all together we thus find

oo &w
\,8 42 Ymn(z) 53 20a(x) = 0, (15)
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Eoiama that (i) the energy constraint (13) is fulfilled and (ii) &, + &, wm ek + €.
Obviously under this restrictions the functions wum,(z) u,(z) which are .moESosm of the
original differential equation (7) are orthogonal to the mm.ooua derivative of any solu-
tion zkt(z) of the corresponding adjoint differential equation (8). But what about the
(normalisation) integral

I = \.8 dz um(z)un(z) (d*/dz?) zpmn (2) (16)

if besides Eq.(13) also £, + €n = € + & applies. Is it different from zero and what do
the functions zxi(z) look like 7 To answer these questions we differentiate the adjoint
equation (8) with respect to = and obtain
d —
MSNB:AH: = Ll{dzmy,/dz] = 0. (17)
Thus, if zma{z) is a solution of the adjoint equation (8) then its derivative @NE: (z)/dzis
a solution of the original differential equation (7). Vice versa, to each mo~.=£o= Youn(z) of
the equation (7) there exist a solution zm, (z) of the adjoint equation with the property
& 2on(2) = Youn (2). (18)

Indeed from L[Ymn(z)] = 0 follows immediately that zp,,(z) defined by Eq.(18) obeys
the equation L{zmn(z)] = C, where C is a constant. Actually, zy,, is defined by wn.ﬁmv
only up to a constant and can be chosen such that C' = 0. Now we specialize the solution
Zmn{z) of the adjoint equation (8) in expression (16) by the requirement

2 2n(2) = tm(z)gnz), (19)
where ¢,,(z) is any solution of the Schrédinger equation (2). In particular, &:A.av can
be chosen to be linearly independent of the energy eigenfunction u,({z) and is .gos
nonnormalizable. Substituting equation (19) into (16) yields after partial integration

Lnn = .\. dz upun wﬁ:‘:&:v
o W A\. dz A:Eﬁ: %ﬂﬂﬁﬂaﬂﬁv - Aﬁaﬂﬁvwﬁﬁ.a.&:vv
= W \,&H :W— A:aw&: - &:Mm&mﬁzv = Wg\ﬁﬁﬂ:&:v 4\, &&ﬁw:. Awov
Here W (uyn, ¢,) denotes the Wronskian
d
W (un, &::Hv = .::A.dv.&m.dlﬁuﬁﬁv - &:Aﬁva::?& — S\A:ﬂfﬁﬁiﬁov , (1)
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which is independent of z for arbitrary solutions un(z) and ¢,(z) of the stationar
Schrodinger equation (2) for the same energy eigenvalue e, and depends only on the
solutions involved [10]. ‘The Wronskian W (un,#,) vanishes if the two solutions Uy
and ¢, are linearly dependent and is different from zero if the solutions are linearly
independent. Therefore, to get the biorthonormality of the functions U (z)un(z) ang
(d/dz)[us(z)éi(z)] within the restriction (en —em) = (e — ex) the function ¢, Asv
must be chosen as a solution of the Schrodinger equation (2) which is linearly indepe,
dent of the normalized solution u, (z) with a proportionality factor in such a way that
the Wronskian in Eq.(20) becomes equal to 2. Collecting all together and using gm
presupposed normalisation of the eigenfunctions u,, (z) we finally arrive at E

oo

.\ dz upmu, %TF&; = 0mibns, (22).
r :
—-—00
provided that
W(tn,¢n) = 2 and (e, —€m) = * (&1 —ex). (23
Obviously, an arbitrary multiple of the normalized solution u(z) can be added to th
nonnormalizable solution ¢;(z) without changing the biorthonormality relation (22
since the Wronskian remains preserved. Moreover, we note that our proof shows that’
instead of (d/dz)(ukéi) we can as well use (d/dz)(wéx) as our pattern function fri in?
Eq.(4). :
In conclusion, we have shown that the density matrix elements in the energy represen
tation can be determined from the spectral components (3) of the position distribution
P(z,t) by sampling them with pattern functions which are the first derivative of thé
product of normalizable and nonnormalizable solutions of the Schrodinger equation in
the energy representation.
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