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We use the analogy between the photon annihilation and creation operators and
the Susskind-Glogower exponential phase operators to introduce the quasidistri-
butions of the cosine and sine operators.

1. Introduction

Besides the measurement of the phase shift and the operational approach to the phase
difference operators, we may distinguish the formalisms of the realistic phase from
those of the ideal optical phase. The realistic phase can be named also the phase from
phase space distributions [1-6]. The most familiar phase space distributions are P, W,
and @ functions. They are derived via orderings of photon annihilation and creation
operators and, in fact, they represent only joint quasidistributions of the quadratures.
Exactly, this is inevitable for P and W quasidistributions related to the normal and
symmetric orderings of the annihilation and creation operators, respectively, but the Q
quasidistribution related to the antinormal ordering is encountered in the simultaneous
measurement of the quadratures. Consulting [7], we learn that quasidistributions can
be defined via two sorts of orderings of the quadrature operators. Unfortunately, the
standard and antistandard orderings of these operators lead to quasidistributions, which
can be not only negative, but also imaginary.

The formalisms of the ideal optical phase seem to be unified due to the success of the
Pegg—Barnett formalism [8,9], which has superseded the previous Susskind-Glogower
formalism [10], and owing to the recognition of the antinormal ordering of the Susskind—
Glogower exponential phase operators [11-13]. In this paper we intend to illustrate the
similarities and differences between the antinormal ordering of the annihilation and
Creation operators and that of the exponential phase operators.
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2. Analogy
The Susskind~Glogower cosine and sine operators can be defined as
€05 ¢ = Re[&xXp(ip)], sin p = Im[exp(ie),
where the exponential phase operator
&p(ip) = (aa')~*a,

with a m.zm at the photon annihilation and creation operators. Our study is based o
observations that the commutator

[ExB(i), Exp(~ig)] = |0)(0]

Is a projection operator similarly as [4,a!] = I and that the commutator .

(638 580 ] = £ [0)(0 0

s similar to [Re &, Im a =11 :
In addition to the properties of the Susskind-Glogower phase operators which are

exposed by the commutators, there are some which are related to associative algebra.’
Let us name ;

\Hr._m relation is suspicious at first sight. In fact, in the measurement theory we caii
assign, to the Hermitian operator on the left- or right-hand side of (5), a random
variable taking only the values of w and 1. In a state of the physical system, where theé
photon number distribution is known to be {p(n)}, the sum of squared Smmozoawﬁ.a
owmnmﬁﬂm takes the value of 1 with the probability p(0) and the value of 1 with thé
Eopvmg_;% 1—p(0). 1t is the possibility that the random variable assumes the value
of 3 that provokes. Although there is no need of ordering cosine and sine operators ofi
the left-hand side of (5), we see that using (1), we sum the expressions 4

1
o~ 2 _ — . N i e
(cos @)% = % [exp(i2¢) + exp(ip)exp(—ip) + exp(—ip)exp(ip) + &xp(—i2¢)],

-~ e, <
(sin @)* = — - [EXB(i2¢) ~ &P (i) P (i) — m@?%ﬁw@:mﬁi@sz.3.

which are oao\nmm .m%BSmnlowzw in the exponential phase operators. But, if we OH.mm,.,,n
the operators exp(ip), exp(—iyp) antinormally, we obtain the operators

[ 007157 = Sli+ &2, [ )7]C° = 511 - @3 (20)]. ®)
On summing, we get
[ 0)? + 5in svwﬁa =1, (9
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A similar use of the normal ordering leads to
—~ N2 es .
TOOm )% + (sin ) T\ =1-10){0]. (10)

in the measurement theory we assign to the Hermitian operator of (10) a random
variable taking the values of 0 and 1. The possibility that the random variable assumes
the value of 0 is undesirable. On the contrary, to the identity operator in (9), we assign
the deterministic value of 1 [11].

The analogy between the operators d, @', Re @, Im & on the one hand and the
operators €xp(ip), €xp(—ip), €08 ¢, sin v on the other hand is so far going that the
terms the standard and antistandard orderings for the operators éos ¢, sin @ and the
terms the normal and antinormal orderings for the operator &xp(iyp), exp(—ip) are
natural. These orderings are given by the following rules of assignment:

—_——m
Standard sin™ @ cos™ p — G08"psin ¢
Antistandard sin™ @ cos™ p — m\mwaﬁn\o/m:s
Normal exp(—imp) exp(inp) = exp(—imyp)exp (iny)
Antinormal exp(—imp) exp(iny) — exp(inyp)exp(—imyp)

In relation to the symmetric or Weyl ordering the four phase operators behave equally

well. Nevertheless, just in this case the Pythagorean theorem, as applied to the unit

circle, is not obeyed. In the only case of the antinormal ordering, results are desirable.
The eigenstates of the cosine operator are given by the expansion

C) = VT Y Uu(O)ln)  for Cel-1,1], a1
0 for C€[-1,1],

where U, (C) are the Chebyshev polynomials of second kind [14]. In fact, no eigenstates
can be the null vectors, but we add them having in mind the spectral density measure.
The eigenstates of the sine operator are defined by the property

1Sy =|C = S), (12)

where 7 is the number operator, i = a'a. Let us note that the unitary operator
" = exp (i wwv represents the rotation of the phase space by 2
Assuming
Q= cos™! C, Gwv
We remember that the eigenstates of the cosine operator are superpositions of the so-
called phase states

€)= r==slexpliv)lie) ~ exp(—i)] ~ o). (14)
The phase states |¢) have the property,
PR I VY TN § -y
(Pl = g2 + 39l ¢) = iz Pt (257 (15)
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P

s&mw.o ﬁs (principal value) denotes a generalized function of ¢, which 1s the limit
the indicated function, but replaced by zero in a symmetric neighbourhood of o=
¢’ (mod 27). From this we derive the following cumbersome formula

©18)=Vi-cr/i-5 Twso -

T C?4+S52_-1

+ i sgn(CS)S(C? + S? — :_ , (16

«iﬁm.wo Pc relates to the zero points C = +/1 — 52. We introduce the quasidistributig
of cigenvalues of the cosine and sine phase operators using the method of quanty
characteristic function which was outlined in [15]. Quantum characteristic functio
are defined by the scheme

csf_T m _ ~ACS T, .0
oot (g+g) - oo (5 +0)}-

where § is the density (state) operator to be represented by the quasidistributions and

exp(if ¢os p) exp(iT sin ®),

b)
a9
n
!
1=
+
T
~——
!

< T 0 .~
Des . Alm + smv = exp(ir sin ) exp(if ¢os ¢),
sl AN —r+if__ T+ ___ .
1% 5tis) = ewp 3 exp(—ip)| exp — exp(iy) | ,
- cs T é _ T4 __ . —T+i__ .
% AIM + ~Mv = exp ﬁlw,mxv?bvg exp Muw,mxvﬁlﬁuvg ,
« T K o~ -
DS§S Alm + Tw.v = exp(if €os ¢ + it sin ¢),

where the Fourier transform

(o (o)

1
=13 \ \ exp(—ifC — irS)CCS Auw + va dfdr. (24)

Quite generally we apply the prescription (23) in the domain of operators and we arrive
at the operator densities

P +1iS) = TL ?& A;w + WE (C +iS), (25)
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uwamw%
#S5(C+iS) = (CIS)CXS], (26)
§95.(C+iS) = (SIO)S)CI, (27)
855(pe) = 26(5% — 1)lg)el, (28)
BF(C+iS) = ) (n+1) Y (C+iS) T RE"TIC? + §)fmiom)
n=0 m=0
oo m—1
+2 3 (m+1) Y (C - iS)™ = RE™=M(C? 4 §)[n)(m]
L m=0 n=0
for C*+ 5% <1, (29)
®S5(C+iS) = 0 for C24+ 5% > 1, (30)

where R _E?v are the shifted Jacobi polynomials [14]. We have omitted the case of
the normal ordering from among (26)-(30), because the operator density is an operator-
valued generalized function here. Still generally, an application of (23) to (17) leads to
the rule
°5(C +iS) =T {p8°5(C + i5)}. (31)

The reconstruction of the original state operator can or cannot be accomplished
according to a scheme

5= \ \ &°S(C +iS)A%S(C + i) dCdS, (32)
where
2 C*+5%-1
AS5(C+iS) = -— S\C, 33
< C?+ 5% -1
CcS > —
Agise(C +15) = la%_sar (34)
ASP(C +iS) = |C +iS)(C + i8], (35)
with [C +iS) a coherent phase state,
AGS(C+iS) =) ) tam(C? + S?)(n|8S5(C + iS)|m)[n)(m], (36)
n=0m=0
with
{(n+m+1)

Unm(C? + 5% == (1-C?-38%). (37)

(n+1}(m+1)
In the case of the antinormal ordering the scheme {(32) cannot be embodied, because
the state of the physical system cannot be determined completely by the mere phase
Properties.
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3. Unusual operator orderings

The analogy between the operators a, &', Re @, Im & and the operators &xp(iyp);
&Xp(—ip), €08 ¢, sin ¢ has led to the use of the terms the standard, antistandard;

to the standard and antistandard orderings is the unit square, which is as ugly as tha
these quasidistributions can take imaginary values. In principle, the support of the
quasidistributions related to the normal and symmetric orderings is the unit disc. As
expected, the support for the antinormal ordering is the unit circle. .

In the case of the normal ordering, the coherent phase state is represented by
Dirac delta function, a striking analogy to the normal ordering of the annihilation and’
creation operators. The analog of smoothing, which proceeds in the transition from'
this ordinary normal ordering to the ordinary antinormal ordering, cannot be obtained:
at some intermediate stages in the case of the exponential phase operators. The thre
stages available exhibit not only smoothing, but also some centrifugal trend. The Jjoint:
quasidistribution of cosine and sine supported by the circumference is related to th
antinormal ordering.
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