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A method for measuring internal quantum correlations and multimode density
matrices of optical pulses is proposed. In balanced homodyne detection a signal
pulse and sequences of short local-oscillator pulses are superimposed and the time-
integrated difference-count statistics is recoreded. For chosen distances between
the test pulses, the phases and relative intensities of the pulses are varied from
measurement to measurement. Using a sequence of N test pulses, the quantum
statistics of the signal pulse can then be obtained in terms of N correlated non-
monochromatic modes. In particular, the determination of the N-mode density
matrix in a field-strength basis can be accomplished with (N +1) Fourier integrals.
The method also applies to the measurement of the quantum state of a correlated
N-mode field whose modes are separable. In this case pre-superimposed signal-
field modes must be combined with a local-oscillator mode.

1. Introduction

One of the most powerful methods for measuring the quantum states of optical fields
has been balanced homodyne detection. It is well known that when a signal mode and a
strong local-oscallator (LO) mode are mixed by means of a 50%:50% beam splitter and
the difference photocurrent of two photodetectors in the output channels of the beam

!Presented at the 4th central-european workshop on quantum optics, Budmerice, Slovakia,
May 31 - June 3, 1996
2E-mail address: opatrny@risc.upol.cz
Permanent address: Department of Theoretical Physics, Palacky University, Svobody 26, 771 46 Olo-
mouc, Czech Republic
3E-mail address: pdw@hpxsl.physik.uni-jena.de
4E-mail address: vogel@physik3.uni-rostock.de

0323-0465/96 © Institute of Physics, SAS, Bratislava, Slovakia 469




470 T. Opatrny et al. --_

splitter is measured, the field-strength statistics of the signal mode for a certain phag
parameter can directly be obtained, see, e.g., [1]. As was shown theoretically {2] an
demonstrated experimentally [3], from the field-strength distributions for all phases ;;
a 7 interval the quantum state of the signal mode can be obtained. In the experiment
in [3] the Wigner function was reconstructed tomographically and used to calculate th,
density matrix in a field-strength basis by performing a Fourier transformation. Late
it was shown that the quantum state can also be obtained by direct sampling of th
density matrix in various bases from the measured data [4,5]. The method can also b
extended to the measurement of the quantum state of multimode optical fields whog
modes can be used separately as input fields in multiport homodyning 6,1

Recently experiments have been performed in which a signal pulse and a LO puls

photon-number statistics of the signal pulse at different times in the pulse (8]. Using' }
a train of well-separated short LO pulses and varying the phases and relative inten
sities, we show that the correlated multimode quantum state of the signal pulse can’
be obtained by direct sampling of multimode density matrices from the measured data
{10]. The method can easily be modified in order to measure also density matrices of .
correlated multimode fields whose modes are separated from each other.
2. Measurement scheme
To measure the internal quantum statistics of optical pulses, an apparatus is desired
that performs an appropriate mode decomposition of the pulses without introduction
of additional noise and measures the quantum statistics of the correlated modes. This :
can be achieved by a homodyne detection scheme shown in the figure. The signal pulse
Scheme of measurement [10]. A signal
pulse and a train of strong LO pulses
Signal that are short compared with the sig-
—_— nal pulse are combined by a 50%:50%
beam splitter, and the time-integrated
difference-count statistics in the out- . -
—— put channels is measured. The train of "
= LO pulses is produced interferometri-
N.Hv ~ LO cally, so that the pulse distances, rela-
- : tive phases, and intensities can be con-
trolled.
Pk Gk
consists, in general, of mho:ﬂa:::m of monochromatic modes with photon destruction
and creation operators 6(w) and bt(w’), respectively, [b(w), (w’)] = 6(w' —w). Let I

us suppose that the LO pulses are prepared in coherent states, so that the positive-
frequency part of the kth pulse centered at time #; can be described by a function
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q () where gx(t) is assumed to be normalized to unity and -y is a complex number.
k il
.%\m now consider the operators

5 = \ du G (w) b(w), (1)

where x(w) is the Fourier transform of gi{t), §i(w) = Silﬁ\m& gk (t) mxv.TES.MHa
can be shown that when the LO pulses g (t) m:..a gk (t), k £k, are vavmox_amam. y)
nonoverlapping, then the operators ax and m\ﬂ satisfy the standard GOmoEm commutation
relation [ak, PS =dxs. Hence, the train of N LO pulses can .Uo cm&.ﬁo. introduce a set
of N nonmonochromatic modes [9] and “probe” the correlation m.gsmﬁﬁm of a.rm signal
pulse in terms of these modes. In particular, measurement of the integrated .a_m.oamdoo-
count statistics can be shown to be equivalent to measurement of the sum of signal-pulse

field strengths N
F =" qFilpx). (2)
k=1

Here,

Srv va

is the field strength associated with the kth pulse-like nonmonochromatic Eo.aa centered
at time {; in the signal pulse and gx i1s a non-negative 8.& H.umam.Eoﬁmw given by the
(relative) amplitude of the kth LO pulse. gommwlsm the distribution of the sum field
strength (3) for all values of the (relative) amplitudes gx ?x >0) and v.:mmam vk (dx €
7 intervals), we can obtain the quantum statistics of the signal pulse within the frame
of an N-mode density matrix.

Fu(px) =271/2 A@»@Lﬁ +ale

3. Intermodal correlations

For the sake of transparency let us consider the simplest case when the .mmmnm._ mE_mo
and only two short nonoverlapping LO pulses centered at the times .? and t3 in n.vm signal
pulse are superimposed. In this case, measurement of the time-integrated difference-
count statistics yields the statistics of the sum of the field strengths of two modes of

the signal pulse, o X R
F = F(p,Ap,q) = Fi(p) + q Fa(p + Ap) 4)

(ie, g1 =1, g2 =¢). The measured moments of /* are related to the moments and
correlation functions of the signal pulse at the two times ¢; and t, in the pulse as

=3 (2)m ()i o rae) (5)

m
m=0

Measuring Amsv for (n 4 1) values of ¢, from Eq. (5) we obtain a set of (n + 1) ET
€ar algebraic equations whose solution yields the signal-pulse moments and o.oqm_mamo:
functions (FP~™(p)FJ* (¢ + Agp)) for the chosen values of ¢ and Ayp. Varying ¢ and
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Ay, the procedure can be repeated many times to obtain the @ and Ap mmvazmmunmnbm
the moments and correlation functions. In the limit when the number of measurermep
goes to infinity all the moments and correlations can be obtained, the knowledge o
which is equivalent to knowledge of the two-mode density matrix. ‘
If we assume that the signal and the LO come from different light sources, then th
phase ¢ cannot be controlled and the phase-averaged (even) moments

1

() = 52 [ ap (i)

can only be measured. Eq.(5) then modifies to

(Fr)y=3" Amv (T PP (p+Ag)),

m=0

n being even. For example, when n =2 Eq. (7) enables us to calculate the quantit

(F2(p)) and (Fy(p) Falp + Agp)), k=1,2. The moments (£2(p)) are closely related to
the mean numbers of photons (f1) and (75) at the two times ¢; and i3, respectively, i
the signal pulse. The cross term

(Fi(p)Fa(p + Ap)) = wAmHmmmeDs +c.c.

can be regarded as the second-order coherence function that probes the effect of signal
pulse interference at a “temporal double slit”. It should be noted that the photon:
number correlation (#;75), which for stationary ergodic fields is usually measured in'a |
Hanbury-Brown and Twiss experiment, is among the terms available in the case when
n=4.

4. Multimode density matrices

us again restrict attention to the two-mode case. We first introduce the single-mod
field-strength eigenvectors | Fx, ¢x) satisfying the eigenvalue equation Fi(pk)|Fk, or)=
Fi | Fk, px), where Fi(px) is given by Eq. (3), k= 1,2. Accordingly, _ﬂr.ﬂ?ﬁrﬁ&_ﬂ
IF1,91)|F2, 2) are the eigenvectors of F=F, (1) + F2(p2) belonging to the eigenvalues
F=F1+F5. The two-mode joint field-strength distribution of the signal pulse is then
given by pj(F1, Fy, 01, 02) = (F1, Fa, @1, 02| 8171, Fa, 01, {2), where § is the two-mode
(reduced) density operator of the pulse. The probability distribution of the measured
sum-field strength (2) can be given by

PlFse i v0) = [AF [ 4Fan(F, Fopt 42) 6~ Froosa-Fasina), (0

where we have substituded in Eq. (2) for ¢; and go, respectively, coso and sina (@ €
(0,7/2)). To obtain the two-mode density matrix, we note that in a field-strength basis
it is simply given by [4,6]

(Fi=F, Fa=F3, 01, 02 6| F1+ F{, Fat Fy, 1, 2)

1)’ .
= Amv q\&@u\&w\m ml-@-.ﬂ.+tm.ﬁnv/H\ANTNM.A\;,@MV. A“_.Ov, :
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here
" z = zi(ye, Fi) = /w2 + (2F4)2, (11)

P = Yk, Fi) = @i — arccot{yx /(2F;)] (12)

FL> 0), and ¥(z;,22,%1,%3) is the characteristic function of the joint probability
k2 ) 3 ) )
distribution,

U(z1, 22, %1,%2) = \ dF \ dF, Ttz Ty (7, Fo i, ). (13)

The key point here is to take advantage of the connection between the Eovwvzu_ﬁ%
distribution of the sum, Eq. (9), and the characteristic function of the joint probability
distribution, Eq. (13), which can easily be derived to be

U(z1, 22, %1, %2) = \ dF €7 py(F, a, $1,42), (14)

where
2= 2(z1,22) =2} + 23, (15)
a = afz1, z2) = arctan(zz/z;). (16)

Thus, combining Eqgs. (10) and (14) we arrive at the reconstruction formula
(Fi=F, Fa=Fs 01,020 0| F1+ F1, Fat Fi 01, 02)
N - .
=(3) [on [ameornm (a7 oz o0, a1
T

where [according to Egs. (11), (15), and (16)]

¥ =y, FLF) = /i + 83+ QF)? + 27)?, (18)

3 + (2F3)?

= 19
EICALE 1)

B =By, y2, F;, Fy) = arctan
and 4 is given in Eq. (12).

5. Conclusions

Equation (17) reveals that the two-mode density matrix can be obtained from mro
Sum-field-strength distributions by a threefold Fourier transformation. The mﬂ:m?.Ob
can be used for direct sampling of the density matrix from the measured data quite
similar to the algorithm in [4]. Using the sampling function given in [5], from Eq. (17)
the density matrix in the photon-number basis can be obtained as well. In the paper
We have considered perfect detection. Extension of the results to nonperfect detection
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ith the usual coherence measurements, they only contain ensemble averaging. Sing
1ere is no temporal averaging, there is no necessity of restriction to stationary fields
loreover, the method can also be used to measure intermodal moments and density
atrices of spatially separated modes. In this case the modes can Sammmmwosgaow:w
e combined in order to obtain a pre-superimposed signal mode who is detected
ur-port balanced homodyning (see, for details, [10]). .

We have restricted attention to the case of detecting two modes. A generalization .
e results to the case when N modes are detected is straightforward. In particular, the
termination of the N-mode density matrix can be accomplished with (N +1) Fourier
tegrals — one integral for obtaining the characteristic function of the density matrix
om the measured data and one integral per mode.

After preparing this paper we received a preprint with similar problems: M.G
aymer, D.F. McAlister, and U. Leonhardt, Two-mode quantum-optical state mea-
rement: Sampling the joint density matrix (submitted to Phys. Rev. A).
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