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R. Myika®
Joint Laboratory of Optics, Palacky University and Czech Academy of Sciences,
Olomouc, Czech Republic

Received 31 May 1996, accepted 7 June 1996

Optimalization of phase shift measurement is addressed from viewpoint of quan-
tum estimation theory. A probability operator measure (POM) describing the
optimal measurement is derived. Afterwards we find input quantum states which
minimize two different costs of error. These results are compared with several
existing proposals of the phase shift measurement.

Papers about quantum phase measurement seems to be an evergreen of recent years.
There are many suggestions of optimal measurements or optimal quantum states. In
this overflow, however, the meaning of the word optimal is often vague. Here we draft
the way from quantum description of an experimental setup over definition of optimality
criteria to retrieval of the best measurement and the best appropriate quantum state.

The scheme considered here is a common Mach-Zehnder interferometer. Two modes
of an input quantum state |¢;,) are mixed at a lossless 50/50 beam splitter, then prop-
agate along different paths and finally the second beam splitter produces an output
state |(01,02)). An unknown relative phase shift § = f; — 05 is the quantity to deter-
mine. The transformation of the input state can be clearly expressed using generators
of SU(2) algebra [1]. Let us define operators

1 - 1
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atag—aaf), J; = Aa ay—atay), N =afai+afa,,
where @, and ay are the annihilation operators of the input modes 1 and 2. Common
eigenstates of N and J, form a basis of two-mode Fock states | JkY, =7+ k)ili — k)2

while common eigenstates of N and J,, form another basis, closely related to the Mach—

Zehnder interferometer. The first beam splitter, the phase shift and the second beam
splitter are represented in sequence with transformations

By = see.mhv. P = exp(ifo N +i0N /2 +i0.7,), By = eee.mto — ).
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Having neglected all factors independent of 8, the total transformation reads

[(0)) = exp(i0N /2) exp(—if.Jy)|tin).

The first factor is often omitted [1,2] in order to get a simple tranformation of mdA
type. However the transformation exp(— %M& yields the same output state as Q1
only in following two cases: i) if we confine the set of all possible measurements $
a particular detection method insensitive to the factor oxw?mz /2), such as photé
counting. Or ii) if we restrict the set of possible quantum states to density matrices
factorised with respect to N. A two-mode Fock state |jk), is a trivial example of such
factorised state. Generally the complete transformation (1) have to be used. Qtherwige
the omission of the first factor brings not simplification but complications: anothe)
spectrum of eigenvalues and 4m periodicity, which is intrinsic for particles with spin 1 \ m
but pointless for the photon interferometry. Further we discuss only a case of pure inpy
states, fin = |¥in)(¥in|. Usage of mixed states gives no improvement but complicates
calculations too much .

We describe the estimation process with a probability operator measure QUOZV [3]
mé@ non-negative additive Hermitian operator II(A) satisfying condition % o 11(6)d6 =

1 defines a measurement of a parameter ¢ with a probability distribution e

P(¢10) = Tr{{1($)4(6)},
where ¢ is a value of the estimation of the unknown parameter #. So as we can mmo_%
what kind of phase estimation is the best, let us define a cost function C(¢|0) = Q@ 8
We use and compare two different ?soﬁoum using delta function

Cs(¢ —0) = —d[(¢ — §) mod 27]
means maximizing peak likelthood P(66), while using quasiquadratic function

26-0
2

Cisin(¢ — ) = 4sin

minimizes an average cost of errors

o= [ [ cw.0)pio)z0aeas,

where probability density z(#) represents our a priori knowledge about estimated pa
rameter f ( often 1/2r i.e. uniform ). ;

The technique of construction of an optimal POM is described in [3]. We oml
interesting but a little longer derivation and state only results here. If the set of inpt!
states is restricted to states with fixed number of photons,

i
[Win) = Y cklikly,

k=~j
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the optimal POM has a form of a covariant measurement [3,5)
ﬁ..&.ang (0)e'%y, 1)
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The kernel IT.0v(0) is matched to the input state through v = Argex. This POM
generates shift-invariant phase distribution

P(8I6) = 5- M lexle=*0=00 (8)

The covariant POM depends little on a particular choice of a cost function. It is optimal
for a rather wide set of “reasonable” cost functions including (3) and (4) [5].

A canonical measurement represents another POM often considered optimal [2]. In
the .@ basis it has a structure similar to the covariant measurement with a kernel

. L&
Mean(0) = 5= D 1ikdyy(ill ©)
kil=—j
and yields phase distribution
—ik(6—¢
P(¢l0) = wa WU cre”KE=9)| (10)

The difference is obvious: the canonical measurement is not matched to the input state
and hence it measures not the induced phase shift but an overall phase of the output
state with respect to the .\».c basis. When the coeflicients ¢, are not real and positive
(e.g. for a coherent state), the canonical POM does not yield a correct phase shift
distribution. This comparison also shows why measurements with mixed states are
generally worse than with pure states — if particular components of a mixed state are
not phase matched, no POM can be matched to such input and resulting non-coherent
Superposition yields worse phase resolution.

Having founded the best POM, the second part of the optimization is retrieval of the
Quantum state which minimizes the average cost (5). Unlike the probability operator
Measure, choice of the best input state depends on a chosen cost function. Eq.(8) shows
that the phase distribution depends only on the probabilities Py = |cx|2. For the delta
Cost function (3), the best input has a form

i
[phomy = (25 +1)72 3 eXx|jk),y, (11)

k=—j



460 R. Myska

[%in) [ lgrom)y 1957) 130 lid)-
P(6l8) N N N N172
Ad o | N-1/2 N-1 N-4  N-1/2

Table 1: Dependance of precision of the optimal measurement on used energy N.
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Figure 1: Dependance of peak likelihood and dispersion on used energy: (a) [7°™), (b) _ﬁnou
(c) 150, (d) 175)=

Xk being arbitrary phases. For the sine cost function (4), the best input reads

kmw

Sy (12)

J
[95) = G+ )72 ) eXrcos s
Rl

Attained precision for both states is compared in Tab.1 and Fig.1. There are als
results for two other inputs: a Fock state with equal photon numbers in both the inp
ports |j0), = ?.XS? suggested recently in [2,6], and a Fock state |j5), = |27)1{0}
with all photons in the input 1 and the input 2 empty. Structure of the states S;w
respect to the ,\e basis is displayed in Fig.2.

Now we leave off the constraint (6) and consider a general input state

[iny =) M.Q»CES ﬁ.wv

2j=0k=—

index 2j means summing over both integer and half-integer values. Hereafter we hav
to use the full transformation (1). Having optimal POMs I1;(¢) for each of j-subspaces,
it is natural to simply add them,

Hpum(#) = 3 1;(9). (14)

25=0
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Figure 2: Structure of used input states: (a) _ewoﬁv_ (b) [#5°%}, (c) |70}, (d) |77)=

However, in this manner contributions from component subspaces would be added only
non-coherently,

P{¢|6) IMP M MU _n;_mlzﬂ@ | (15)

The optimal POM can be constructed in the following way. hmn operator Pj is a projec-
tor to the subspace appropriate for eigenvalue k of N/2 — Jy operator and probability
incident to this projection reads

Pe = (inPeltoin) = D lej il
2=k

Then the optimality conditions are fulfiled by POM

eon(¢) = m..iz\f.bvﬂa% onal.iz\wlbv. (16)
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Figure 3: Phase distributions for differrent POMs applied to a coherent state {a)1[0)s, [a]* =
10: (a) fIcon, (b) Msum, (c) photodetection.

Measurement described with this POM yields phase distribution
2

1| e
P(¢)6) = B Mwm\mm:ﬂg 4) (17)
k=0

with coherently compounded contributions from the component subspaces. Fig.3 shows
the difference between these two POMs for a coherent input state. A considerably worse
result for direct photodetection [7] is displayed for comparison too.

We have shown a formulation of the phase shift measurement in the ?mamionw of
quantum estimation theory. Commonly used description of the Mach-Zehnder interfer-
ometer is in some respect inaccurate and sometimes may lead to confusion. The POM
describing the optimal measurement is similar to the canonical measurement but have
to be matched to a used input state. Mere canonical POM can give incorrect results
in a general case. Finally if the setup is not restricted to a fixed photon number in
the input, a POM better than a simple sum of measurements on component subspaces
can be found. The states giving the best resolution for the optimal POM then appoint
ultimate limits of the phase shift measurement.
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