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We give a mmnmwm for how to generate various harmonic oscillator states formally
defined in finite-dimensional Hilbert space.

1. Introduction

Recently, various harmonic-oscillator states defined in a finite-dimensional Hilbert
space (FDHS) have aroused considerable interest (see, e.g., Refs. [1-4] and references
therein). These studies are stimulated by a possible application of the new discrete
Wigner formalisms [5] to quantum-state tomography of finite-dimensional systems and,
on the other hand, by the popularity of finite-dimensional approaches to the phase
problem (including the Pegg-Barnett phase formalism) [1,6].

Several representations and physical interpretations of the FDHS states have been
suggested within atom optics and cavity quantum electrodynamics. Moreover, states
constructed in the FDHS go over into the standard (i.e., infinite-dimensional) ones in
the dimension limit. In this Communication, we propose a new generation scheme of
the finite-dimensional harmonic oscillator states.

Our approach is a generalization of the one-photon state preparation method de-
veloped by Leoriski and Tanas [7,8]. We study models of a nonlinear interaction of
a pumping classical mode with a cavity field in a nonlinear medium described as a
higher-order nonlinear Kerr medium (multi-photon anharmonic oscillator).

Several schemes of state engineering have already been proposed (see Ref. [9] and
references therein). These methods offer the possibility of generating arbitrary photon-
number states. In particular, they can be used to prepare any state of the FDHS as a
finite superposition of Fock states. However, as we know, a method of direct generation
of the FDHS states has, as yet, not been found. Our scheme enables us to perform a
direct preparation of a large class of harmonic-oscillator states formally defined in the

FDHS.
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2. Harmonic oscillator states in FDHS

We are interested in states constructed in the finite-dimensional Hilbert space of
harmonic Omn:mfmaon. This space, denoted by #(*)  is spanned by (s+1) Fock states whj
are complete, 1 = 377 _, [n)(n|, and orthogonal, (n|m) = &, m. Equivalently, the space
#(5) is spanned by the phase states |fm) which also form a complete and orthonormaj
basis. The phase states were applied in various finite-dimensional formalisms of the
Hermitian optical phase operator (for review see Ref. [6]). On the other hand, the
phase states can be used in the construction of a discrete Wigner function [5].

The generalized (finite-dimensional) annihilation operator is defined in #(¢) by
at) = 31 _ v/nln — 1)(n|. As can readily be checked, the commutator [a(*), ﬁm?vvj
differs from 1. So, the operators a(*) and Am?vﬁ are not related to the Weyl-Heisenberg
algebra. Moreover, the Baker-Hausdorff identity does not hold for them. These proper-
ties of the finite-dimensional annihilation and creation operators really complicate the
analytical approach to quantum mechanics in #(*), including the explicit construction
of various finite-dimensional states.

The coherent states |a)(,) in the (s + 1)-dimensional Hilbert space of a harmonic
oscillator can be defined in a Glauber sense by the action of the analogue of the Glauber
displacement operator on the vacuum state, ...m

lo)s) = D) (@)|0), where DE)(a) = exp AQAME% - Q*mﬁév, Sy

as was suggested by Buiek et al. in Ref. [1]. The displacement operator D{*)(a) is
given in terms of the finite-dimensional annihilation and creation operators. The co
herent states |@)(,) are close analogues of Glauber’s (i.e., infinite-dimensional) coherént
states o). They were introduced and discussed by Buiek et al. [1] and their number;
state representation was found by Miranowicz et al. [3]. A numerical analysis of th
photon-number statistics of the states (1) in comparison with the Poissonian photon
statistics of the standard infinite-dimensional coherent states was given in Ref. [1]. ‘Px
comparative study of the phase properties of the finite- and infinite-dimensional '¢o=;
herent states within the Pegg-Barnett phase formalism was presented in Ref. [3]:°A
thorough treatment of these states, together with their discrete number-phase Smmnmm.
functions was presented in Ref. [4]. The finite-dimensional coherent states (1) approach’
the standard infinite-dimensional coherent states for |a|? < s as was shown numericall
in Ref. [3] and analytically in Ref. [4]. S

Let us define squeezed vacuum [()(,) in the (s + 1)-dimensional Hilbert space
analogy with the standard (i.e., infinite-dimensional) squeezed vacuum, namely by,
action of the finite-dimensional squeeze operator on vacuum, i.e., .

100 = §9(C) [0}, where  5)(¢) = exp {¢(a)1? - ¢*(@*))?}

and ¢ = || exp(ip) is the complex squeeze parameter. Our finite-dimensional squeezed
vacuum [()(,) goes in the limit of s — oo into the standard squeezed state {¢).

Quantum state engineering 453

3. Scheme of state generation in FDHS

We consider a cavity with a nonlinear Kerr medium. The cavity field, which is
jpitially in a vacuum state, is pumped by a train of short pulses (kicks) of the classical
electromagnetic field at the frequency of the cavity field. The process is governed by
the general time-dependent Hamiltonian H (t)

N\WQV = N\WMAQ._. -+ MWEQGQV va

in the form of an unperturbed system, i Kerr, and a small driving perturbation, Hiyjcks(1)-
The unperturbed (between the kicks) evolution of the cavity field, in the (2N — 1)th-
order nonlinear Kerr medium (or N-photon anharmonic oscillator) is modelled in the
interaction picture by the Hamiltonian [10}:

= AX oy ~t N~ hXp ~n ~
Hkerr = \V/W_,*&ZQZ = %:A:I:.:?lz.rs, (4)

where @ is the annihilation operator for the cavity field; n = ata is the photon number
operator; X, is proportional to the (2N — 1)th-order nonlinear susceptibility of the
medium, x(3¥=1). The time-dependent Hamiltonian

uas(t) = en@™ +a")f) (5)

describes Mth-order parametric process driven by a sequence of short pulses of the
classical field. The kick strength e is small enough (¢ < 1) will be treated as the
strength of perturbation. In general, f(t) is an arbitrary real periodic function of ¢ with
the period T. We assume that the time T between the kicks is much longer than 27 /w,
where w is the field frequency. Under this assumption, the short pulses of the pump
field of the frequency w can be modelled by delta functions, f(t) = Y o>, 8(t — nT). If
[#(0)) is a state at ¢ = O then the state |¢(kT)) after k kicks is given by

[$(kT)) = U*|6(0)), (6)

where the evolution operator U is generated by H (t) which evolves states from ¢ = 0
tot = T. For ¢ = 0, the system (3) has a simple operator solution [10}. In order to
find the eigenstates of Ufor0<e< 1, we apply the generalized Rayleigh-Schrodinger
perturbation theory, i.e. a generalization of time-independent perturbation theory for
Systems whose perturbations are in the form of periodic driving [11,12]. Qur problem is
equivalent to finding the Floquet states, or to diagonalizing the sum of the momentum-
like operator and the Hamiltonian (3), Is.a% + H(t), in the extended Hilbert space
He L3(0,T). We state that the degeneracy of the Kerr medium Hamiltonian (4)
determines, under certain conditions, the dimension of the Hilbert space. In the next
Paragraphs, we will show that our systems modelled by (3), for properly chosen values
of M and N, evolve into various states of the finite-dimensional Hilbert spaces.
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3.1. Coherent state generation in FDHS

We apply the generalized Rayleigh-Schrodinger perturbation theory, described
Ref. [12], to the Hamiltonian (3), for M =1 and N = s + 1. We find that the sy
evolves at ¢t = kT into the state

[B(RT)) = S COnY+eCl)ls + 1)+ 0(e),
n=0

where the superposition coefficients C$*) = (n]|@(kT)) for n =0, ..s are

s

' (-1)” .
Ccl) = . ..m*. i $ MU exp (tkzmeco)

Hep(zm)
[Hes(zm)]?

m=0

and forn=s+11is
() _ 1BC® = (_1)* [ st < exp(ikzmcoe)
Csih = Vs +1BC; (-1)*B m+H3Muo Ho.(or)

Here, z,, = HM+: are the roots of the Hermite polynomial of order (s+1), Hegy1(2m)
0. The coefficient B is defined by

is the Fourier transform and a is x,417/(27). The Eqgs. (10) are valid for arbitrar;
real periodic function f(t) with the period T. By comparing the coefficients (9) wi
those in Fock expansion of the finite-dimensional coherent states (1) (see Ref. 3]) ani
omitting terms proportional to €, we find that

lo = —ikeoe)y = G(KT)) +O(e),

Le., the state created in the process governed by the Hamiltonian (3) for M =1 an
N = s 41 is the finite-dimensional coherent state.

3.2. Squeezed vacuum generation in FDHS

Finite-dimensional squeezed vacuum (2) can be generated in the process moéE,mm.,
by the Hamiltonians (4) for N = s + 1 and (5) for M = 2. Alternatively, instead of

o~

Hamiltonian (4), one can choose Hgerr With lower nonlinearity:

5 hy= R - _

mmAmE. = !AWM“*MW_ SAS - Mv ce Aﬁ - M.wvu
where 5 = [s/2] in terms of the Entier function. For brevity, we present only the:
results for the driving function f(t) in terms of delta functions. As in §3.1, we apply
the time-dependent perturbation method briefly discussed in §2. We find it

[$(kT)) = Muu&w_m:v?qmv:_mf 2) + 0(e?), (13)

n=0
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here { = —ike. The superposition coefficients Qmﬁv = (2n|¢(kT)) for n =0, ..,5 are
v

(s) _ _qyn Awwv. ? icle Q:A&SV
Qw: - A Hv /\gammxﬁﬁ _ﬁ_ vawAﬁs‘.v \M+;H3v. AH%V
Cidyy = 27 V(@ + )5 +2)CY. (15)

w,ra polynomials G,(z) in Eq. (14) are given by the recurrence formula Gn41(z) =
Gn(z) —2n(2n — 1)Gn_1(z) together with Go(z) = 1 and Gy(z) = z. Here, zx = em.i:
are the roots of the polynomial G,41(z). The same superposition coefficients (14)
appear in the Fock expansion of the state (2) if the terms proportional to € are omitted.

We conclude that
¢ = —ike),) = [6(KT)) + O(c), (16)

viz. the system, described by the effective Hamiltonian (3) for M = 2 and a given N
evolves into the state (13) which is the N-dimensional squeezed vacuum.

3.3. Fock state generation

As was shown by Leoniski and Tanas in Ref. [7], the one-photon Fock state can be
obtained in the special case of our model studied in §3.1, i.e., for the cavity filled with the
drd-order nonlinear Kerr medium described by the Hamiltonian Hgerr = WXNmAm = 1).
Here, the general perturbation solution (7) reduces to the simple form of the two-
dimensional coherent state

[¢(kT)) = cos(ke)|0) — isin(ke){1) + O(e) (17)

for f(¢) in the form of delta functions with ¢y = 1. It is seen that the state (17)
can reach the single-photon Fock state if the amplitude of the kicks and the time
between the kicks is appropriately chosen. Similarly, the two-photon Fock state can be
reached in the special case of process studied by us in §3.2, namely, for the Hamiltonian
Hyerr = %meﬁm — 1){(f — 2) or simpler Hkerr = memﬁm —~2). In these cases, the
solution (13) takes the form

|(kT)) = cos(v/2ke)|0) — isin(v/2ke)|2) + O(e), (18)

Wwhich is the three-dimensional squeezed vacuum if we neglect all terms proportional to €.
W: N-photon Fock state can be generated in a Kerr medium, described by Hamiltonian
Hyerr degenerated at n = 0 and N and combined with the Nth-order parametric process
Modelled by (5). In general, for N, M > 2, the evolution of the optical system leads to
2 higher-order squeezed state in finite-dimensional Hilbert space.
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4. Conclusion

We have given a recipe for how to generate various harmonic oscillator states formally
defined in finite-dimensional Hilbert space. We believe that our method is the first:
which offers the possibility of direct generation of a large class of finite-dimensiona]
harmonic oscillator states. To set an example, we have applied our method to prepare’
finite-dimensional coherent states and squeezed vacuum, and Fock states. This scheme
can readily be applied in the generation of other harmonic oscillator states of the finite-
dimensional Hilbert space, including displaced number states, squeezed and higher-order
squeezed states, Schrodinger male and female cats, kitten states, phase coherent states, -
etc. :

The problem of generating arbitrary quantum states of the electromagnetic field
plays an essential role in quantum optics. States which can be directly generated :
in some systems are particularly important. We believe that our generation scheme
emphasizes the real physical significance of the states mathematically constructed in
finite-dimensional Hilbert space.
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