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We provide a brief review of unconditionally secure communications between two

parties who have access to a noisy quantum channel and a classical broadcasting
channel. The protocol, originally proposed by Deutsch et al. [1], is based on an
efficient “quantum privacy amplification” method and allows any eavesdropper’s
information on the key to be reduced to any prescribed arbitrarily small value.

1. Introduction

Quantum phenomena have provided a way to transmit messages in perfect secrecy, a
goal that is not achievable in the realm of classical physics. The basic idea in quantum
cryptography [2-4] is to exploit quantum effects, such as the Heisenberg uncertainty
relations or the quantum correlations between two separate systems, to establish a
common secret key between two parties (Alice and Bob). In existing protocols Alice and
Bob detect the presence of an eavesdropper (Eve) by performing quantum measurements
on subensembles of the set of transmitted particles and using the results to determine,
with any desired degree of confidence, that the transmitted particles are not entangled
with any third system such as an eavesdropper. If some entanglement with an external
system is detected, Alice and Bob can decide either to restart the transmission of the key
from the beginning or, if the degree of eavesdropping is not too high, to apply “privacy
amplification” techniques [5]. Such techniques are applied on the “corrupted” sequence
of classical bits that Alice and Bob share and allow to distill from this a shorter but
safer sequence of random bits that can then be used as the key to transmit the secret
nessage. However, the security of quantum cryptography has so far been proved only
for the idealised case where the quantum channel, in the absence of eavesdropping, is
noiseless,

In the present paper we describe a quantum protocol [1] that allows to solve the
Problem of security over noisy channels. In contrast to all previous methods, where
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quantum mechanical effects were used only to detect eavesdropping and privacy am
plification was performed in a classical way, our method exploits quantum Urmuoaanw
both for detecting eavesdropping and for privacy amplification. In the following we
shall refer to this new concept of privacy amplification as “quantum privacy amplifica?

tion” (QPA). A more exhaustive description of the protocol can be found in the origina]
reference [1].

2. Description of the protocol

The protocol starts with the distribution of an ensemble of pairs of two-level vwnﬁn_om

?_monm:&:n:v?mx::ﬁwmmnmeo _&+vv$€mm=>=omm=mwo_u.mmmwma proposed in [3] 52
where \‘

16%) = Z5(100) + [11)) 0
[¥%) = 75(101) + | 10))

is the so-called “Bell basis”. The states [0} and 1) of each particle in (1) denote
respectively spin up and spin down states along the z axis (or any two basis states of a
two level system). Alice and Bob receive each one particle from each pair.

The original entanglement-based protocol [3] is secure in the ideal case of a perfect
source, with a noiseless transmission channel and absence of eavesdropping. In such
case Alice and Bob share an ensemble of pairs in the state |¢*) and they can establish
a secure key by measuring the spin of the particles that they receive along parallel
directions (say, along the z axis). In general, however, this will not be the case since
each pair would have become entangled with the environment. )

The protocol that we propose is based on the transmission of entangled particles,
as in the original entanglement-based scheme, but the particles are not immediately
measured to establish the key: the measurements are performed as the last step of the
protocol and the particles that Alice and Bob receive are first stored and exposed to' a
QPA procedure. The aim of such procedure is to disentangle the distributed pairs from
any external system (including an eavesdropper). In this way the external system will
have no information at all about the outcomes of the measurements that Alice and Bob -
will later perform in order to establish the key. The QPA step is therefore the @:mii.ﬁ
analogue of classical privacy amplification procedures in the sense that it allows to distill
a smaller fraction of “safer” pairs from an ensemble of corrupted pairs, but the ultimate
security it provides comes from the fact that it is performed in a quantum mechanical
fashion. u

Our protocol is composed of four basic steps:

i

(i) distribution of entangled pairs (analogous to the original scheme {3D);

(ii) evaluation of the maximum information that an eavesdropper could obtain on the
state of the distributed pairs;

(11i) quantum privacy amplification;
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A?v measurements to establish the secret key.

We shall mainly describe the second and third steps, which contain the new ingre-
sents needed to guarantee a perfect security of the shared key. To allow for ooaw_.oam
o rality we analyse the scenario which is the most favorable for an eavesdropper, i.e.
Wm%mwm the eavesdropper herself is allowed to prepare all the qubit pairs &.5»... >.=om ﬁsm
Bob will receive and they will subsequently use for cryptography. >s<.8m:m§o m;:mSoM
involves environmental noise that is not under mu<m,m. oosnwor. but nr._m may be treate
as a special case in which Eve is not using the ?: Ewoﬂbwn:.v: available to her. The
most general state resulting from Eve’s preparation can be written as

| %) = co|00) | Ro) + e1 |01) | Ba) + 2 | 10)| Ro) + 3| 11) | Ra), @)

where the four states of Eve’s system | R;) are normalised but, .mn mmzmnwr not o?romwa&
to each other. By preparing the state |¥), Eve predetermines the joint Eovm.g:@
distribution of the four possible outcomes of the spin measurements w.mosm the z-axis and
therefore she will have some a priori information about the wof._w_ d:._.<m_:mm amm_umnon.mm
by Alice and Bob. For example, she knows that Alice E: register g% <mw:m o with
probability [co|? + |¢1]? and bit value “1” with vaovmgrﬁ le2|? + le3]? which gives her
1— H(|co|? + [e1|?) bits of a priori information about >.__on Smc.: Q& (p) = -p logp —
(1-p)log(1—p)). Similarly she has 1—H (|co|?+|cs|?) v;.m of a priori information about
Bob’s result. Eve can also measure her ancilla after Alice’s and Bob’s Emmm.zn.oSmw;m
and try to determine its relative state | R;). In general Eve cannot reliably distinguish
between those states because they are not orthogonal to each other and an upper bound
on the amount of information she can acquire is given by Holevo’s theorem [6]:

Nwhn = .m.ﬁwwv = —Trgp _Om OR va

where

3
er =Y lal*| Ry (R:]. (4)
i=0
Since the global state (2) is pure, for any set of relative states {| FZ the von Zm:Sw.HE
entropy S(gr) is equal to the von Neumann entropy S(p) where p is the reduced anm;w\
operator describing the state of the two particles p = Trapciya | ¥) AG |. Thus Eve’s
acquired information about the outcomes registered by Alice and Bob is bounded by

Nmnn = %Abv Amv

The total information available to Eve is then bounded by the sum of the a priori
and the acquired information. Alice and Bob can evaluate such bound by orOOmE.m at
fandom a subensemble of their pairs and estimating p by evaluating spin correlations
on this subensemble. If the resulting value of the total information exceeds a prefixed
threshold and the resulting key cannot be considered secure, the QPA step is then
applied. The way to estimate the maximum amount of information available to @wm
that we have just described may not be the only or the most general one, but as we will
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Fig. 1. Schematic representation of the QPA procedure. Alice performs a /2 rotation’
her particles and a CNOT. Bob performs a ~m/2 rotation and a CNOT. Alice and Bob th
measure the target pair and keep the control pair for the following iteration if the resul
coincide.

now show the QPA procedure that Alice and Bob perform allows to reduce any boun
to any arbitrarily small value. Therefore, the security of the protocol is completely:
indepentent of the criterion adopted to evaluate the degree of eavesdropping at step .mvﬂ

For the sake of simplicity, let us now see how the QPA works in the case of an
ensemble of pairs of spin 1/2 particles all described by the following density matrix

p=alg*) (T +b]47) @[+ c|gt) (W +d|47) (4],

and Bob performs a rotation in the opposite direction R_,/, along the z-axis on hi
two particles. Then both Alice and Bob perform a quantum Controlled-NOT operatio
[7] where one of the pairs gives the two control qubits and the other one the two targe
qubits. Such operation acts on two qubits and gives

[2) [9) — I2)lz@y)  (e,p) €{0,1},

where the first qubit is the control and the second the target and @ is addition modulo
2. Subsequently Alice and Bob measure the spin z-component of the target qubits:
and publicly exchange the results they have obtained. If the outcomes coincide they-
regard the operation as successful and keep the control pair for the second round. If
the outcomes do not coincide they agree to discard the two pairs.

We have now described a single step of the QPA procedure. If it is successful the:
remaining pairs will still be described by a density matrix of the form (6), still diagonal
in the Bell basis representation, with diagonal elements {a', ¥, ¢, d'} given by Z

d = (®+d%)/p (8)
¥ = 2bc/p 9

i
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Fig. 2. Average fidelity as a function of the number of iterations for four different values of
the initial fidelity ao.

c (c* 4+ 0% /p (10)
d = 2adfp (11)

Here p = (a4 d)? + (b + c)? is the probability of success i.e. that Alice and Bob obtain
coinciding outcomes in the measurement on the target pair. If Alice and Bob have
sufficiently many pairs at their disposal the procedure just described can be repeated
with those pairs which survived the first filtering. The aim of the procedure is to drive
the surviving pairs as close as possible to the original uncorrupted state |¢*), at the
cost of sacrificing some of the distributed pairs (the target pairs and the control pairs
that are discarded after the measurements). We take the fidelity

F= (4" |p|4*) (12)

as a measurement of the closeness of the state p to the uncorrupted state | %) (4™ |
8]. Such quantity is given by the first diagonal element a {or a’) of the density matrix
in the Bell basis representation. If the initial fidelity ao is greater than 0.5 then the
average fidelity increases in the process and asymptotically goes to one [1].

In order to check that such condition is fulfilled before starting the QPA procedure
Alice and Bob can estimate the initial average fidelity ¢y by measuring spin correlations
on a randomly selected set of distributed pairs. The fidelity is given by

@ = 21+ (0202) ~ (030,) + (.02). (13)

.F Fig. 2 we plot the fidelity as a function of the number of iterations for four different
Initia] states of the form (2) with b = ¢ = d. As we can see, the convergence to the unit
value is very fast and few iterations of the procedure are needed in practice.
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When the fidelity approaches 1 the average density operator of the remaining pairg
necessarily approaches the pure state |#%) {¢7 | and the joint state of Eve’s ancilla and
the particles necessarily approaches a product state of the form

|¥) = 1/v2(100) + [11)) | R), (14)

because a pure state cannot be entangled with another system. The QPA procedure
disentangles the particles from the eavesdropper’s ancilla and clearly reduces to zero
Eve’s total information about the outcomes of Alice’s and Bob’s measurements of the
spin components. Alice and Bob can now establish the key without further processing.

5. Conclusions

We have presented a quantum cryptographic protocol that allows for the secure trans-
mission of a secret key through a noisy channel. We have first discussed a way to
evaluate the upper bound on the amount of information that an eavesdropper could
obtain about the distributed signals between the two legitimate users. We have then
presented a “quantum privacy amplification” procedure to be applied on the distributed
pairs before the key is established. Although the procedure has been explicitly discussed
in the simplest case of an ensemble of distributed pairs all described by the same density |
matrix (diagonal in the Bell basis), the procedure can be straighforwardly generalized
for more complex initial preparations [1]. The method guarantees a complete secrecy -
of the key that is subsequently established.
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