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We discuss the ”time-evolution” of coherent states defined in finite dimensional
Hilbert space. Two definitions of these states are considered: that of Glauber-like
coherent states, and truncated coherent states. We pay attention to the periodic
features in the evolution of these states.

1. Introduction

The most commonly used states in quantum optics are Glauber coherent states [1).
Quite recently Pegg and Burnett proposed phase operator [2] defined for the finite-
dimensional Hilbert space (FDHS). Since strong interest in the problem of FDHS has
appeared many authors adapted the definition of Glauber coherent states to the finite
dimensional cases. It is possible to define FDHS coherent states in various ways. In
this paper we will concentrate on two definitions. The one is based on the treatment
of the coherent states as a result of the action of the displacement operator on the
vacuum state. Of course, both the vacuum state and displacement operator are defined
similarly as in the Glauber definition {1], but they are spanned in the FDHS. This
approach was applied and discussed in the papers of Buzek et al. [3] and Miranowicz et
al. [4]. The alternative attempt is based on the Glauber definition too. Nevertheless,
for this case the vacuum state and the displacement operator are defined in infinite
dimensional space. Then the Fock base expansion of this state is truncated. This
method was developed by Kuang et al. [5]. In this paper similarly as in [6] those
FDHS coherent states will be referred to as finite-dimensional Glauber coherent states
(FDGCS) and truncated coherent states (TCS), respectively. Moreover, we will show
that the FDHS coherent states evolve in a various way depending on the way they were
defined, concentrating on their quasi-periodic and periodic behaviors.
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2. Definitions of the FDHS coherent states

As we rwﬁ.dﬁ:ﬁosaa earlier, Kuang et al. [5] defined the coherent states in FDH

aw_m ﬁmcunmﬁo: of the Fock expansion of the Glauber infinite-dimensional coherent o
Fvﬁoov. This method is equivalent to the action of a non-unitary operator meAM,wﬁ.
the vacuum state. Of course, proper normalization should be applied. Those “aw
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The normalization constant A" can be written in the following form:
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The quantity L;*~1 appearing in (3) is a i i %
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The other type of FDHS coherent, states are those referred to as \?&a-&sgmmmm&
.QGE_Ew no\..m%m:n states. They are defined in the same way as the appropriate stat
in infinite-dimensional Hilbert space, but all of the states and the Glauber unitar;
&«mEmn.mBmuﬂ operator exp(aat — a*a) are defined in the FDHS. Thus for the (s +vHv~
dimensional Hilbert space , the expansion of the FDGGCS can be Snwmﬁmc in the fo

[5]:
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M_To m.mﬁnoﬂm He,, T\.L are modified Hermite polynomials and z4 are the roots Omar
ermite voqzoa._m_ of order (s + 1): (He(s41)(zx) = 0). To obtain He,(z) from the
Hermite polynomials H,, we use the following relation:

Hen(z) = 277%H,(x/91/7) (6)
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Fig. L. The scalar product (5)(a(0)|a(7)), for s = 10, 11,100, 101. Dotted line — TCS, solid
line — FDGCS.

3. Quasi-periodicity and periodicity for the FDHS coherent states

In this paper we are interested in the quasi-periodic and periodic behaviors of the FDHS
coherent states. At this point we should clarify what kind of periodicity we are interested
in. Namely, we can treat the FDHS as the space in which the state evolves where the
quantity a plays the role of generalized time ¢{. In consequence, we can observe some
periodicity for some states defined in FDHS as the function of the generalized time «.
Hence we will use the two quantities  and the time ¢ equivalently. From the definitions
of the coefficients (*) and c(*) (eqns.(2) and (5)) we see that periodic functions of o
appear for the FDGCS coefficient ¢(*). The coefficients 5(*) do not exhibit such periodic
properties. Therefore, we will concentrate mainly on the FDGCS.

As it is seen from eqns(4) and (5) FDGCS can be expressed as a sum of cos(zxa) f(z«)
and sin(zxa)g(zk ), where the factor zj is a root of the Hermite polynomial He. Due to
symmetry we include the positive zx only, i.e. 0 < z; < 23 < .... We are searching for
the period T' = a fulfilling the relation

le®))s)y = lalt+T))) (7)

Due to the properties of the roots of the Hermite polynomials we can write (particularly
for even 5):

T o BE (8)

Tk

Using the appropriate approximation for the roots of the Hermite polynomials we obtain
the following formula for the period 7"

T =~ (148;50dd)V4s+6 . )
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Fig. 2. Number state distribution for various values of = @ — 0,1,---,20 and s = 50.

As we will show, the value of T obtained from (9) is particularly close to the exact valu
of the period for even s. S
To show the occurrence of the periodicity of the system {a is treated as a scaledsih
time) we plot the product of two FDHS coherent states EAQQ&_QQMVVE. Assuming
that o € R this product becomes v

){e(ti)]a(tz)),) = flta — 1) = f(r)

Thus, Fig.1 shows this product as a function of the time r. We see that for short:
time regime both FDGCS and TCS behave almost identically. Nevertheless, for longet:
times a significant difference between these two states occurs. TCS reaches its final
value remaining constant, whereas FDGCS exhibits quasi-periodic behavior. Moreover; .
we see that for higher values of the space dimension (s + 1) this quasi-periodicity
becomes almost ideally periodic. Fig.1 shows the ”time-evolution” of the product (10).
for both even and odd values of s. It is seen that for even s the periodicity is weaker -
after each quasi-period additional, nonperiodic features become more and more visible.
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Fig. 3. The quantity {(s){ala(r + T)) &_n for various values of s. Circles correspond to even
values of s, square marks — to odd values of s, empty marks — to approximate values of T,
and filled marks — to T found numerically.

Nevertheless, they are negligible for higher values of s. In addition, for odd s the value
of the quasi-period T is approximately two times greater than for its even counterpart.
This fact originates from the "phase reversal effect”. For this case the value of the
scalar product reaches —1. We see that the product reaches the same value as for the
initial time but with the opposite sign, contrary to the even s where the product reaches
approximately the same value and sign as for the initial time. Moreover, for some values
of 7 the scalar product is equal to zero, so the initial state and the state for the time =
are orthogonal.

To show the behavior of the FDGCS during the ”time-evolution” we plot (Fig.2) the
number states distribution of the state for various values of a (treated as the time 7).
We start from the vacuum state |0) and increase the value of . We observe the wave-
packet style distribution moving towards higher values of n. As this ”packet” reaches
the border of our space interference effects occur. This is an effect of the reflection
of the ”packet” from the border of the space. After this reflection the packet moves
towards n = 0. During this motion it changes its shape and becomes a vacuum state
distribution as for 7 = 0. This effect can be referred to as "ping effect”. For further
times we observe the same behavior as for r < T (for s = 50 the periodicity is nearly
ideal).

Fig.3 shows the function |(,{a(t)|a(t + T))(,)|* plotted for various values of s. We
have included plots corresponding to various methods of finding the period T. We
Compare the results for T' found numerically and those derived from our approximate
formula (9). We see that for s = 1,2 the FDGCS exhibits ideal periodic behavior.
2m<mgrm_omm‘ as the dimension of the space increases this periodicity changes to quasi-
Periodicity. This is a result of the form of the Fock-expansion of the FDGCS. The
coefficients ¢ are defined by the sum of the periodic functions. The ”frequencies”
inside these functions are determined by the roots of the Hermite polynomials. For the
Cases of s > 2 the ”frequencies” are not identical and their quotient is not a rational
Dumber. In consequence periodicity does not occur. Nevertheless, as s increases the
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quasi-periodic behavior tends to be ideally periodic. Moreover, Fig.3 shows that f, .
€ven s we achieve better agreement between the approximate solution (9) and the HW
obtained from the numerical calculations. This fact agrees with our earlier discussioy

during derivation of the approximate formula for T

4. Conclusions

We have discussed the finite dimensional Glauber coherent states Am,UQOmV and th

truncated coherent states (TCS). We have paid attention to the quasi-periodic ap
periodic properties of those states. We have shown that only the FDGCS exhibits thog
properties. Moreover, the behavior of this kind of states depends on the dimension o
the space. For s — 1,2 the states are periodic, whereas for higher values of s they
are quasi-periodic. 295;*5_@%“ as s increases their behavior tends to periodic. ,H,Em,ﬂ
tendency is more prominent for even values of s, Additionally, we have shown that fop
odd s phase reversaj effect occurs. Moreover, we have shown that the dynamics of the
FDGCS expressed in Fock-state basis exhibits the behavior that we have referred to
as the ping effect. In this paper we derived an approximate analytica] formula, for the
period T of the quasi-periodical behavior of the system. Our formula is particularly
fulfilled for even s and agreement between our analytical result and the numerical result
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