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SPONTANEOUS EMISSION IN FINITE PHOTONIC CRYSTAL
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We investigate basic features of a simplified model of a spontaneous emission from
an excited level of a two-level atom inside a finite one-dimensional photonic band
crystal bounded by a pair of perfectly conducting mirrors.

1. Introduction

Photonic band structures (PBS) make possible demonstration of quite unusual pro-
perties of an EM field and an interaction of such a field with matter. These properties
are quite interesting itself and furthermore indicate to be very useful in potential ap-
plications. This is the reason of the strong theoretical and experimental interest in this
field during last ten years [1,2,3,4,5]. :

The most striking feature of PBS is an expressive modification of the density of
modes (DOM) of the EM field in the PBS in comparison with a field in a usual material.
This density on the one hand tends to zero in the region of gaps and on the other hand
it becomes very large near the edges of gaps. This feature (with purely classical origin)
concerns of the macroscopic EM field and can be deduced from the dispersion relation
connecting the wave vector and the angular frequency of the EM wave. The modification
of the DOM entails unusual features in quantum optics of the light interacting with
atoms in the PBS. The most instructive example is a spontaneous emission from a
discrete atomic level. According to Fermi’s golden rule

wpi = ZZHAVIN ol (1.1)

the spontaneous emission rate w 1i is directly proportional to the DOM. So by modifying

of DOM the spontaneous emission can correspondingly be inhibited or enhanced (6].
The simplest model of a PBS was proposed by John and Wang [7]. It is an analogy

With the one-dimensional Kronig-Penney model familiar in the solid-state physics. In its
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Fig. 1. The scheme of the considered PBC.

physical essence describes a device working on the same principle as photon bandpass
filters used in optics. Although this one-dimensional simple model does not consider 4
aspects of the vector nature of the EM field, it is frequently used in theoretical analysig
(8,9] because of its relative simplicity and possibility to obtain analytical expressions
The analysis based on this model makes possible qualitative understanding of the natur
of propagating of an EM field in real PBS. ;
In the present paper we Investigate several basic features of quantum optics of lighi
inside the finite one-dimensional photonic band crystal (PBC) bounded by a pair of:
perfectly conducting mirrors. We investigate populations of levels of a single two-leve
atom enclosed in the PBC and spectral properties of a radiation emitted by the ator}
Although this model does not expresses quantitatively real situations, it reveals th
essence of physical processes under consideration. i
In our quantum calculations we use the method of numerical diagonalization of th
considered Hamiltonian of the system. We then develop a state-vector of the system in
the basis obtained in this way.

2. Formulation of the problem

Let us consider the one-dimensional crystal according to the Kronig-Penney model#
except of the finite length. The crystal is composed of a certain number of identica
periodically placed layers - lattice periods (see Fig. 1). Each period contains two :w.
layers with generally different thicknesses @ and b and refractive indices n; and 7
respectively. The refractive indices inside each sublayer are constant. We denote the
lattice constant by A, i.e.

A=a+b

The length of the crystal will be referred to as L,ie.

L=gA |

branches which correspond to a dispersion relation given by an increasing dependen
w = w(k). This dependence is a function except of points on the edges of the gaps. iw
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formally quantize the field and investigate its interaction with a two-level atom
ther d in the structure. We investigate the simplest nontrivial case when the atom
.nn.n_wmmwzw in its excited level and the field is initially in a vacuum state. Numerically
“.W__thmﬁmm probabilities of the atomic excitation and spectral properties of the radiated

field are presented.

3. Free classical macroscopic field in the finite photonic band crystal

To obtain a formula for the classical electric field, it is sufficient to use the results
obtained for the infinite crystal with the same structure E So when we have a mo_.BF.:m
for the electric field in the infinite crystal, we QE to this formula another one <.<§r
conjugate space-dependent amplitudes. The resulting field oo.auomvwnam to the m.ambm.:mm-
wave field in the finite crystal bounded by the perfectly reflecting mirrors. For simplicity
we firstly consider only a single-mode field. . . .

According to [3], we can write for the field in the infinite crystal in the j-th layer
and p-th sublayer (1 =1,2,...,q; p=1,2)

Ejp(z,t) = E‘u?vml.s“ + :mn?v%.s“ ; (3.1)
where ) .
a;p(x) = Fj,6' "7 + Gjpe™t" " | (3.2)
d
" K, = En..m (3:3)

The complex coefficients Fj, and G}, are related by the relations

Fj, = U= Dt=rAp (3.4a)

bl

Gjp = U DEHRIAG,

where k is the wave number. These relations are implied by the Floquet-Bloch go.o.nmg.
The coeflicients F; p and Gy, are then obtained with the use of the boundary conditions.
The results can be written {(up to a complex constant) in the following form.

(3.4b)

Fi;1 =2(1-()6" ("6 — o) , (3.5a)
Fiz=a(1-Q)8"(1+7)(B" -8) , (3.5b)
G = —2(1+()6* (B — ay) (3.5¢)
Cuz = —al8(1 = )L+ 78" = B) +2(1 +()(66 — o) (3.5d)
Symbols used in the above formulas read
a = tkh , B = ef1e v = eff2® § = gl (= MIM . (3.6)

With the help of Eqs. (3.1) and (3.2) we obtain a formula for the standing electric field
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Fig. 2. The dispersion relation in the considered one-dimensional finite PBC. The crystal
parameters are a = 0.4, b = 0.6, ¢ = 20, ny = 1, n; = 2.5. The modes on the edges of the gaps
are not depicted since the corresponding field is zero. ,,

in the finite crystal of the length L = gA.

Ejp(z,t) = 2[(Fj, + Qwuvm..a‘.a =R Aﬁw + Qh.LmJ.a»J coswt

44F;p+ G}l sin(k,z + ¢;,) coswt

)

where N
bip = arg(Fj, + Gi,) + 7

The boundary condition i
E@0,t)=0 Am.ow

provides us with the appropriate phase factors of F and G. Eq. (3.7) is valid for the
modes corresponding to the wavevectors ;
g !

by = m (3.10)

where m is a positive integer number. The frequencies corresponding to the modes km
will be referred by w,, and are obtained from the dispersion relation

anjw bnaw nf+n? | anw . bnow i
cos - sin sin . (3.11)
c c 2n1n, c c

coskA = cos

The existence of the PBG is given directly by this relation. Fig. 2 shows the part of
the considered branch of the dispersion relation, i.e. also the mode structure in the
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:cted region. We see that the DOM is finite even near the band edges. The modes
: P 2 start with the first one having k = 7/L. The modes exactly on the edges of the
i m,_m.<m equal wavenumbers mm/A where m is in general any positive integer. [see the
mm% vwwoz relation (3.11)]. We do not consider and do not plot these modes because the
e onding electric field has zero amplitude along all the crystal [see Eq. (3.7). The
MMM.mmm%m appearing quasiperiodically in the mode structure at k = mm/A for generally

each positive integer m.

de

4. Quantized field

In this section we write a quantum operator of the .Emouo%ﬂ.ﬁmn classical m.wmo_pao m&.a
(3.8) Firstly we deal with a single-mode mw_m to .&Ev:@ uonwn.E.F The classical m_m.oﬁ:o
field (3.8) can be written without subscripts j and p, providing that the amplitude
|F+ G*| , &, p and ¢ depend on z. Thus we have

E(z,t) = 4|F + G™|(z) sin[&(z)z + ¢(z)] coswt . (4.1)

We define the corresponding ” phenomenological” QM operator in the Schrédinger pic-
ture as

E(z,t) = Eof(z)(a +a') (4.2)
where
m.c = W«IE s mev
. €
and
f(z) = |F + G*|(z) sin[x(z)z + ¢(z)] ; (4.4)

€ is the averaged dielectric permitivity, i.e.
E= .\Hﬂ?:w +bnl) . (4.5)

The operator (4.2) should be correctly normalized. The normalization (of F and G)
must be chosen so that the condition

L

| \ () E{z)dz |0) = Ws. (4.6)
0

for the mean value of the vacuum-field energy is satisfied (for each field mode). In the

Lhs. of Eq. (4.6) a contribution of waves propagating in the unit-section part of Su.m

crystal is taken into account. The symbol [0) means the ground state of the harmonic

oscillator (the field mode). For the case of a multimode field the electric field operator

is generalized as

NUU_AHV = MU Ey fulz)(aw + @H..v ) (4.7)

Where £, fo(z) and a,, are analogies of Ey, f(z) and a.
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5. Hamiltonian

We choose an interaction of the electric dipole type in the rotating-wave approyiy
tion between the two-level atom and the EM field. The two level atom is character
by the Hamiltonian H, with two eigenstates |g) and |e) (ground, excited). The muow%
of the two levels are 0 and hw,. The system Hamiltonian in the Schrédinger pict;

hwp

A =S Y twaba, + 3 66 () Sy 4y + Soal) |

where
Sz = le)e| — |g)(gl
is the atomic inversion operator, ,m,.+ and S_

erators, respectively. Gt (z) is an effective
system and the field mode w,

are the atomic raising and yoémanmnom.
coupling constant between the two-leve

hw
(eff) -
hGE(2) = ey 1D, 1z |

where eDg, is the matrix element of the electric-dipole operator.

Having the Hamiltonian (5.1) we can start to solve the given problem of the spon:
taneous emission of the two-level atom. The initial state of the system to be such tha
the atom is in its excited level and the field Is in the vacuum, i.e.

[¥(0) = Je; 0) -

An important complete basis of states for the problem under consideration is the basis
of the unperturbed Hamiltonian (first two terms of (5.1))

{le; 0), lg; 11), lg; 12), ...}

In our calculations we write the perturbed Hamiltonian (5.1) in the basis (5.5).
we numerically calculate eigenvalues and eigenvectors of this Hamiltonian. .
procedure we truncate the infinite Hilbert space (5.5) to a finite dimension by takin
a finite number of the field eigenmodes.? Then we develop the time-dependent stat
of the system in the given basis taking into account the initial condition (5.4). Having’
evaluated the state vector of the complete system in a time t we can use it to calculate
excitation probabilities of the atom and the radiation. In the remaining sections w
present and discuss some of the obtained results.

6. Spontaneous emission of the two-level system in the finite PBC. 0

It is seen from Fig. 2 and from the formula (5.3) that the character of the investigated.
system yields two basic unusual properties of the system in comparison with the infinite

2We use 95 field eigenmodes, i.e. first 5 allowed bands, the last mode having kgg = 997/ L.
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Fig. 3. The time-dependence of the atomic excited-state population for the crystal parameters
as in Fig. 1, the atomic parameters are za = A/10, wa = wio,wi9,ws0 (solid, dashed and
dotted, respectively), D, = 10°A.

crystal case. The first feature is the discreetness of the field owmm:Bomo.m. _H“vm mmooum
feature is the position dependence of the modulus of the effective coupling ” constant
Qmwﬁ?v given by (5.3). This means that by modifying the position Om. nrm. atom .mum its
transition eigenfrequency we can observe various situations with qualitatively 9@29.;
regimes of the atom-field interaction. We choose several regimes and study the atomic
Populations and the radiated spectra. Important parameters of the crystal are ﬁ.rm
number ¢ of periods of the crystal, the refractive indices n; and n of the crystal material
and the thicknesses a and b of the sublayers. These parameters must be x_v.:zm%w &.o
the atomic transition frequency wa so that interesting effects can be ovmmzma. This is
achieved when the wavelength of the light corresponding to the atomic eigenfrequency
is of the order of the lattice period. The number ¢ of the lattice periods must not
be very large if we want to study significantly discrette-mode cases. The course of
the interaction is essentially influenced by the value of the matrix element Dy, in the
coupling constant. We choose a fixed value Dy = 10%A. This value .&oam not aspire to
be physical; it is chosen with regard to the unit section of the considered part of the
Crystal and our requirement to investigate the case when the ﬁsm-mmvmﬁam:ﬁ state of
the system has nonnegligible overlaps with several eigenstates of the Hamiltonian (5.1).
This feature corresponds to the noncomplete decay of the atomic level. .

Fig. 3 exhibits a typical behaviour of the atomic excited state population for z:..mm
Values of w, and the atomic position near the mirror (xa = A/10). We can see Om.n:-
r;o@ patterns around average values. A strongly oscillating pattern of the evolution
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Fig. 4. The long-time average value of the atomic excited-state population (solid line) vers
the atomic transition frequency varying around the first band gap of the crystal with param
ters as in Fig. 2 and the other atomic parameters as in Fig. 3. The effective coupling constan
GE™) versus the mode frequency is depicted by points. ,.

A
remains for all atomic frequencies in the allowed regions. The atomic population onl
slightly differs from unity if the atomic frequency lies near the center of the gap. Fig:/
exhibits a long-time average value of the atomic population as a function of the atomi
transition frequency. (The matrix element Dy, remains constant.) To provide us with
more complex view we plot the frequency dependence of the effective coupling constantt,
M in the same graph. We can clearly see from Fig. 4 that the time averaged atomil
population reaches the highest values inside the gap. The lowest values of the popula®
tion are reached at the right side of the gap. This is naturally given by the fact that®
the effective coupling constant is relatively large in the right side of the gap. The oscil
latory behaviour outside the gap is given by the discreetness of the field eigenmodes.®
As we have already mentioned, the pattern of the atom-field interaction in the studied

3An important role is played by a spontaneous-emission shift of the atomic level. A very detailed
discussion of this effect can be found in [4] for the continuum spectrum case. However, mmmma_n—m_;
qualitative features of the mention discussion remains valid also for the example studied in the &mnnnﬁmm
case. 3
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Fig. 5. The long-time average of the radiated spectrum. The crystal parameters are as in
Fig. 2, wa = wig and the other atomic parameters are as on the Figs. 3,4.

example depends sensitively on the position of the atom. The results presented in Fig. 4
are relatively interesting because of the position-dependence of the coupling constant.
It corresponds to the atom near of the mirror (za = A/10). We can see relatively
slowly varying behaviour of the effective coupling ”constant” as a function of the mode
frequency. The situation is different when the atom is placed far from the mirrors. The
Teason is obvious - the effective coupling constant varies with x and z as goniometric
functions of k z. So if the atom is far from the mirrors the effective coupling constant
varies rapidly as a function of w. .

Fig. 5 displays a long-time averaged photon spectrum (i.e. squares of the modulus of
Probability amplitudes) for the case when the atomic transition frequency coincidences
with the 19th field eigenmode. We can see which modes contributes to the interaction
most significantly.

In conclusions, we have studied spontaneous emission of a two-level atom in a rel-
atively simple model of a photonic band structure, when a one-dimensional photonic
band crystal is bounded by a pair of perfectly conducting mirrors. If the crystal contains
& small number (< 10?) of lattice periods and the atom is placed near of the mirror, sig-
Nificant effects due to the presence of the photonic band gaps, the space and frequency
dependence of the effective coupling constant and due to the discrete spectrum of the
field modes take place. Namely, the atomic population performs oscillations rather then
3 complete decay. The effect of the highest density of the modes at the edges of the
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gaps is particularly compensated by decreasing of the effective coupling constant in this
frequency region.
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