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The content of phase information of an arbitrary phase—sensitive measurement
is evaluated using the maximum likelihood estimation. The phase distribution
may be characterized by the Kullback-Leibler relative information — a nonlin-
ear functional of input quantum state. As an explicit example the measurement
of quadrature operator is Interpreted as quantum phase detection. The phase
distribution achieves the ultimate resolution predicted by the Fisher information
if exists. The method links several recently developed phase concepts such as
Shapiro~Wagner phase measurement, marginal distribution of Q-function, “phase
without phase™ concept, adaptive phase or detection of phase shift in interferom-
etry into a common framework of quantum estimation theory.

The problem of phase estimation on the basis of an arbitrary multiple measurement
of phase—sensitive observable [1],{2],{3] may be sumarized in the following way. Assume
for concretness the quantum measurement of a quantum variable Y yielding discrete
spectrum |y ) enumerated for brevity by an index k. The purpose of phase detection is
to determine a non-random c—number displacement parameter 8 entering the unitary
phase displacement transformation of quantum state as |$(6)) = e~**N|¢), N being

. @ Hermitian operator [4]. The variable § represents the true value of the phase shift.
The probability of finding yx by performing the measurement in transformed quantum
state [¢(6)) is given by quantum mechanics as p(yx,8) = |(¥[e’?" |y )|2. Knowing all
these probabilities in dependence on the induced phase shift, an unknown phase shift
may be inferred on the basis of multiple output data y;,ys, . . ., ¥,. Using the maximum
likelihood estimation the estimator approximating the true phase is given as the phase
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maximizing the likelihood function L(¢) = Py, 0)p(y2,¢) - . .P(Yn, 8). The commg
envelope of all the phase histograms obtained by repeating the multiple measuremen;
may be expressed as the conditional phase distribution of inferred phase shift ¢ whe

# is true
n

Parr(810) o< § [low ()@ §
k

Pe(0) = p(y,0) and index k exhausts all the possible values appearing with nonzerg
probability. The number of samples n is assumed to be sufficiently large in order to get
statistically significant sampling. The distribution may be expressed using the relative
information (Kullback-Leibler divergence) [5] K(¢}§) = 2k P (0) In pi(8) /i (¢) and
Shannon entropy H{(6) = — 3, pi(6) In px(8) as

Prrr(18) o e~ MHE)+K(#16)]

The estimation may be sometimes well approximated by the Gaussian distribution
with the variance predicted by the Fisher information I (6) = 32 PL(0))?/pk(0) as

A¢ = 1/y/nI(8), the prime denotes the derivative P%(0) = dpi(4)/dd|s=¢. The general
treatment will be demonstrated on the phase concepts already used in quantum theor

A. Quadrature measurement

Assuming the phase sensitive measurement of rotated quadrature operator X 6 =
QHmEalm + ate'), the rotated quadrature eigenstates (variable z) appears with the

probability p(z, 8) = [(|z)e|? depending on the actual phase of local oscillator 6. Mea-
suring the coherent state [a), @ = |a[e®, the phase distribution inferred after n trials
then reads [2]

ﬁﬂhg_m\v o exp{—2n|a|*[cos ¢ — cos 0%},

¢’ = 8 — . Measuring similarly the MAS operator by an ordinary balanced wogomu&ﬂ
detection scheme, the inferred distribution should be shifted by 7/2 yielding

Py (#0') o< exp{~2n|a|*[sin ¢ — sin 0']2}.

B. Adaptive measurement

The best phase resolution in the homodyne detection scheme (3) is achieved if arm
phase of local oscillator compensates the phase of signal field # = 0. This may be done:
in controlled way by changing the phase of local oscillator until the registered value of
p is zero (in average). In this case the phasis are equal within the error predicted b
the distribution

Pir1($10') o exp{~2nfa(’sin® ¢}. (4).

This idea was suggested by Wiseman [6] for phase shift measurement as an adap-
tive scheme, and also coincides with the prediction of so called “phase ASmmmEmEo:s
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without phase (states)” concept of Vogel and Schleich [7], motivated by geometrical
considerations in phase space.

C. Shapiro—Wagner phase

The phase sensitivity of phase distribution inferred on the basis either X or P op-
erators are strongly shift-dependent. Particularly, the phase ﬁomz._u m\, = o of the Umm.n
resolution of phase distribution (3) is the Son.mn case mOa. the phase distribution (2). ..Hw_m
unpleasant property may be removed assuming detection of _uoﬁr.nrm operators ,.::.:L-
taneously. The phase distribution inferred after each single detection of cos ¢ and sin ¢
tends to the well-known Shapiro-Wagner phase concept [8],[9] (marginal distribution
of Q-function) .

m

Pow@) =1 [ " vdrexpl—r [l =02, (5)

On the other hand accumulation of such single detections followed by ML estimation
yields the von Mises normal distribution on the circle [5]; &k = 4n|a|?

Pui(9l0') = expli cos(¢ — 0')]. (6)

1
2nly(x)

D. Noh-Fougeres—-Mandel scheme

In all the above mentioned examples the phase of signal field was determined against
the phase of classical field of local oscillator. More general formulation anticipating the
quantum nature of all the fields is given in the treatment suggested by Noh, Fouggres
and Mandel [10],[11]. In their Scheme 1 two fields are mixed on the beam splitter.
Assuming the input coherent fields a; and a3, the ML estimation tends to the inferred
phase distribution as

6
Pnrum(9]0) o EEX&::?.Qﬁ (7)
i=3
where the average number of the particles on the output depends on phase difference ¢
as

Y 1 . - 1
Ns.4(p) = g1l +HooF2lenflazlsing), Nse(p) = mA_E_N+_S_NHw_S=S_oom ®).

In all the above mentioned examples the phase resolutions may be compared in
dependance on the total energy expenses N. Different strategies of phase estimation
for ¢ = ¢ are compared in Fig. 1. Optimized regime of distribution (3) is given by
the distribution (4). Since N = n|a|?, the width defined as root-mean square for
N5 oois given as A¢ H\Amz\\ﬂv This estimation coincides with the ideal phase
concepts [9] (curve a). On the other hand the phase distribution inferred using both
the measurement of sin and cos functions gives the /2 times worse resolution. The
Phase distribution is denoted as curve (b) and is described by relations (5) or (6);
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Fig. 1. Comparison of various strategies for phase estimation using quadrature measuremen

N = 2n|a|®. The quadrature measurement of non-optimal component (2) yields the
worst phase resolution with zero Fisher information {curve ¢.) In the last mvw:omﬂo:,on.
information theory, the detection and estimation will be distinguished carefully on' the
example of Mach-Zehnder interferometer beating the classical limit of phase resolution

1/v/N.

E. Measurement beyond the classical limit

The phase resolution on the Mach-Zehnder interferometer may be reduced up't
1/N driving the interferometer with two Fock states contalning equal numbers of ph

tons [12]. Denoting @ the true value of induced phase shift the detected photocoun
distribution can be written as

P(20l6) = = Dpr(cos g,

where P? denotes the associated Legendre polynomials, r being the number of photons
on each input port, 2¢ being the difference of photons counted on each output port
The analysis of inferred phase shift will be given for special case of true phase § = P
when the sharpest phase estimation is expected. In this case the value ¢ = 0 only;is
registered. Nevertheless, this detection canot be interpreted as the inferrence of:thé
zero phase shift. Particularly, after single detection, phase shift ¢ is inferred wit
the distribution Py(¢|6 = 0) « [Jo(r¢)]?, since for r large Legendre polynomials may.
be well approximated by Bessel functions Jg- Since the Bessel functions are not squar
integrabile, the estimation of phase resolution cannot be simply based to the “width™of.
respective distribution. More accurate analysis taking into account the nonintegrability:
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Fig. 2. Probability vs. inferred phase for Mach-Zehnder interferometer

of Bessel functions is necessary. Particularly, phase information after single counting of
¢ variable is worse than the classical measurement since

rr/2 dz J¢(z)

r
0

x 1/Inr.

Nevertheless considerable improvement may be achieved in the multiple measurement
scheme when the phase information is repeatedly updated during n M:Q.mﬁmzams.ﬁ.amw.
Surements P, (4|0 = 0) « [Jo(r¢)]?". Taking into account mnmﬁ?:on._:_,.m.mwmgrﬁw of
Bessel functions, the ultimate resolution predicted by Fisher information is (A¢)? «
H\T:.J for n > 4, total number of particles being N = 2rn. Oo:mm@:o::% Mrmm result
May be interpreted as proposed by Holland and Burnett [12] (A¢)? o 4n/NZ, but the
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optimum is achieved just for n = 4. If the strategy of phase detection is based mainly of
-the multiple repeating of single counting (i.e. n is large) then the “classical” interpreta.
tion A¢? o 2/ (rN) seems to be more appropriate. This is demonstrated in F ig. 2, whe
the distribution P, (4|0 = 0);n =1,2,3,4,5 and total number of particles N = 120
compared to the classical scheme with one closed port and N photons in the remaining
port yielding the distribution of inferred phase shift [(2N)!/2x(2N — 1)1 cos?N (¢ /9
[1]. This explicit example demonstrates the difference between direct aBmmm:SEm:ﬁu.,
when the desired information is derived immediately after the registration of measured
variable, and quantum estimation, which optimizes also the procedure of data handlip
‘This seemingly slight differences may apper as crucial, since the appropriate estimation
may increase the resolution considerably. This point is sometimes overlooked in the
literature [13] when the detection procedure only is optimized.

Interpretationally, the estimation theory completes the quantum measurement j
the following way. The statistics of detected variable is determined immediately after:
the (single) registration. On the other hand statistics of estimated variable is found i

g

of measured variable is a linear functional of density matrix, whereas the statistics of
inferred variable is given by a nonlinear one. Information content of the given phase
sensitive measurement represents therefore an alternative to the semiclassical principle:
of correspondence for investigation of realistic phase concepts.
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