acta ﬁr%mmnw slovaca vol. 46 No. 3, 399 — 404 June 1996

NON-MARKOVIAN MICROMASER FIELD DYNAMICS DUE TO
NON-POISSONIAN PUMPING!

Ulrike Herzog?
Arbeitsgruppe “Nichtklassische Strahlung” der Max-Planck-Gesellschaft an der
Humboldt-Universitit zu Berlin Rudower Chaussee 5, D-12489 Berlin, Germany

J.A. Bergou®
Department of Physics, Hunter College, City University of New York
New York, NY 10021, USA

Received 24 April 1996, accepted 7 June 1996

We present a unified treatment of discrete and continuous non-Poissonian pump-
ing of a micromaser and investigate the resulting non-Markovian dynamics of the
cavity field. For a micromaser with discrete non-Poissonian pumping we show
explicitly the equivalence of ensemble-averaging and time-averaging. Moreover,
under trapping-state conditions we find exact analytical solutions for the time-
dependent field-field correlation functions explicitly displaying the non-Markovian
character of the cavity-field dynamics. For certain parameter choices these solu-
tions exhibit an oscillatory decay to equilibrium which results in a splitting of the
corresponding spectra into several equidistant peaks.

1. Introduction

The one-atom micromaser is pumped by a beam of excited Rydberg-atoms which inter-
act with the radiation field in a microwave cavity in such a way that at most one atom
at a time is present in the cavity [1]. Normally the atoms in the beam are statistically
independent, and the pump statistics is therefore described by a Poissonian process.
However, the effect of non-Poissonian pump fluctuations on the micromaser dynamics
has attracted a great deal of interest recently. It has been investigated by two, seem-
ingly unrelated, theoretical approaches. The first employs a discrete non-Poissonian
Pumping process where the pump atoms are allowed to arrive, with certain probability
P, only at regularly spaced instants of time [2], while the second is based on continuous
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non-Poissonian pumping [3,4] . In this contribution we present a unified approach SE,nr
is based on a generalization of the latter and can handle both situations on an equga)
footing [5]. The resulting field dynamics proves to be manifestly non-Markovian except
for the case of a strictly Poissonian pumping process.

2. Unified treatment of discrete and continuous non-Poissonian pPumping

We describe the change of the cavity-field density operator ¢ due to the transit m.m
single atom with the help of the superoperator My, i. e. we write o(t +ting) = gﬂqmﬁ ,.
and we assume that cavity damping can be neglected over the transit time ¢;5;. When we'
introduce the usual damping-superoperator L, the evolution of the cavity- field density
operator g from the initial time £ = 0 to the final time ¢ = 7 can be described by the
equation

o(r) = V(7,0)e(0)
where [4]
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Here the quantities Qk(fo,%1,...,tk—1) are the exclusive probability densities for the
injection of exactly k atoms at the time instants ¢o,%1,...,¢x—1. From inspection of
Eq.(2) we conclude that in general the inequality V(r,0) # V(r,t')V(¢',0) holds tr
for 0 < t' < 7 which means that the evolution equation (1) is a non-Markovi
one. The only exception consists in the case of strictly Poissonian pumping wher
Qit2(to,ty, .. .tky1) = rFt2e m(teri=to) with » being the injection rate. In this c
Eqgs.(1) and (2) yield the well-known Markovian master equation ¢ = [r(My — 1)+ 16
[4]. .

In the following we assume that the atoms are injected into the cavity according to
a stationary renewal process defined by the property S

k+1

Qrsa(to,tr, - tkgr) =1 [ ] £t — ticn)

i=1

where f(t) is the waiting-time distribution between consecutive injected atoms ai
is the injection rate which can be calculated from the equation r—! = [® dtf(t)iz

7 = lim; o0 o(7) obeys the equation
(M — 1)+ L =0

where g° is the steady-state injection-time conditioned density operator which refers
to the state of the field immediately before the injection of an atom [4]. It fulfills the
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mapping condition

= \o dt f(t)e"t M, 7° (5)

which expresses the fact that the state of the field is reproduced after the transit of an
atom and after subsequent damping over the mean waiting time. From Eqgs.(4) and (5)
we OUﬁNmb ﬁ@u
L
L—[f37 dtf(t)elt]
Whereas continuous non-Poissonian pumping has been treated with the help of various

Ansatzes for a continuous function f(t) characterizing the waiting-time distribution
(3,4], we use the expression

(M — 1) — +L|z=0. (6)

fit) =60t -T) (7
which refers to the case that the atoms are injected regularly with the constant time
interval T' between neighbouring atoms [3]. To make contact with the model of discrete
non-Poissonian pumping we suppose that not all of the injected atoms interact with the
field because some of them are far from resonance. When p is the interaction probability,
the operator My, occurring in Eq.(2) can be replaced by

My = pM + (1 - p)1 (8)

where the operator Mdescribes the atom-field interaction according to the Jaynes-
Cummings-model and 1 is the unit operator.

3. Application to discrete pumping

When we insert Eqgs.(7) and (8) into Eq.(2) and perform the integrations [3] we
obtain [4]

Vo) = 5 | " M T p( — 1) (M1 4+ p(0t - 1)} e
+% H&\m:&,l& {eMT 1+ p(M ~ C:Tm Lt )

Here [r/T] denotes the largest integer that does not exceed 7/T, and z = 7/T — [7/T].
The two parts of the sum in the above equation arise from the fact that either [7/7]+1
or [7/T] atoms may be injected in an interval of length 7 that is arbitrarily located with
Tespect to the arrival times of the atoms. The steady-state density operator is found
from Eqs.(6)—(8) to be determined by the equation

TE|:HII.$+@ 2=0. (10)

.H_w derive Eq.(10) we considered the whole quantum mechanical ensemble of cavities
Mc;r womc_mﬁ injection of atoms where the arrival time of the first atom varies statisti-
ally in the members of the ensemble. The same equation could be also obtained by
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performing the time average in a single subensemble that belongs to a fixed valys ¥
the arrival time of the first atom, which, for simplicity, we denote by 7 = 0. In {3
subensemble one can define a steady-state injection-time conditioned density opersih
7®) which refers to the state of the system at the time instants 7 = mT + =T
m=0,1...and 0 < z < 1. Tt obeys the mapping condition [6]

@.?L — thH_HH £ NVQS _ CTNCI.&HNAHV .

The unconditioned steady-state density operator 7 is found by time-averaging w!
can be expressed as g = h dzp(®) [6] and it can be shown that the resulting opera
fulfills Eq.(10) [7]. Thus the equivalence of ensemble averaging and time-averagin,
explicitly demonstrated for the special example of a micromaser with discrete pump
When the micromaser has reached the steady state, all two-time expectation val
of the field variables can be obtained with the help of the evolution operator V' [§
particular, we get
(at*(7)a*(0))ss = Tr [V (, 0)a*Bal*]

where a and a! denote the photon annihilation and creation operator of the conside
cavity mode of frequency v. We introduce the Fourier transform

1o 7 @™ (0)a* (0)ss _itworw)r
.WkAEv = mwm4\c &ﬂJ«Hﬂm ( )

which could be measured with the help of a detector based on k-photon-absorption
In order to enable an analytical treatment we assume that the micromaser is ope
ated under the k-photon trapping condition (8]

m
Qﬁmsn ”~ﬂ Q”HMMV

taking into account that, in the photon-number-representation, TE& ok = €
and [M glox = bi(!)gox where « is the cavity damping constant and

bk (1) = cos(lr) cos AN/\wF.ﬂv :
We arrive at

at*(r)a* " s - T T
autr) = L EIE O oty — 1) {10 - 1) (7 [

which yields
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Obviously the expressions (15) and (16) depend crucially on the value of the parameter
by where =1 < bx <1 because of Eq.(15). The function gi(7) reveals a sawtooth-like
pehaviour when the quantity 1+ p(bx — 1) takes on negative values which is possible for
P> w The corresponding spectrum is split into several equidistant peaks separated by
Aw = 21/T (see Fig. 1).
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Fig. 1. Normalized field-field correlation function gi(7) = (a'(7)a(0))se/(a'a)ss (a) and .n_,_m
corresponding spectrum S; (w) (b) for a micromaser operated under the one-photon-trapping
condition gtin, = 37/ /2 with discrete pumping where p =1 and T =~ Hw\w mwwmrmm curve
in (a) corresponds to the Markovian approximation ¢ = p(M —1)L(1 — e~ Y~le+ Le (9]
which is based on Eq.(10).
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4. Discussion

to this, we used the ensemble-average approach resulting from an unified treatment
the micromaser with continuous and discrete non-Poissonian pumping. Thus we wer
able to find, for special cases, exact analytical solutions explicitly displaying the non{
Markovian character of the micromaser field dynamics for non-Poissonian pumping (see
Eq.(16)).

For Poissonian pumping the micromaser field dynamics is a Markovian one, and}
in the most general case, the decay of the delayed field-field correlation function cag
be expressed as the sum of several exponential decaying functions [11]. When some q
them enter with negative weight, the overall decay can become oscillatory giving ri
to spectral splitting, too [12]. However, this effect has nothing in common with thy
splitting into several equidistant peaks occurring for discrete pumping and being du
to the fact that a single atom can reverse the phase of the entire cavity field because
the interference of quantum Rabi oscillations with different frequencies [5].
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