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Using a recently developed formalism of quantization of radiation in the presence
of absorbing dielectric bodies, the problem of photon tunneling through multilayer
dielectric barriers is studied. It is shown that losses in the layers may considerably
change the photon tunneling times observed in two-photon interference experi-
ments. The results further reveal that for sufficiently large numbers of layers
interference fringes are observed that cannot be related to a single traversal time.

1. Introduction

Stimulated by recent experiments [1] - [3], the problem of photon tunneling through
multilayer dielectric barriers has been of increasing interest. In order to determine the
time that is spent by a photon inside such a barrier, the effects of dispersion and ab-
sorption should be tonsidered very carefully. Calculations that have been performed so
far are based on real refractive indices of the layers [1] - [4], so that a number of ques-
tions, such as the influence of absorption on the measured traversal times [5], have been
open. Clearly, in frequency intervals where the bulk materials are nearly transparent
the action of multilayer barriers can be described in terms of unitary transformations
that relate the operators of the outgoing fields to those of the incoming fields (see, e.g.,
Refs. [6] and [7]). The concept of unitary transformations and the underlying quanti-
zation scheme (see, e.g., Refs. 8] - [11]) of course fail when the effects of absorption
cannot be disregarded.

Various approaches to the problem of quantization of radiation in the presence of
absorbing dielectric bodies have been developed {12] - [23]. In the present paper we
use a Green function expansion of the operator of the (transverse) vector potential
[23], which applies to radiation in both homogeneous and inhomogeneous dielectric
matter. Applying the method to the calculation of input—output relations of radiation
at absorbing multilayer dielectric barriers, we can systematically study the effects of
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dispersion and absorption on the propagation of single-photon pulses through sy,
barriers. o
The paper is organized as follows. In Sec. the quantization scheme developed in Bwu.
is applied to radiation falling on multilayer barriers. Input—output relations are deriveg
which are used in Sec. to calculate barrier traversal times measurable in two-photo,
interference experiments. Finally, a summary of the results is given in Sec. . b

2. Input—output relations

As has been shown in [23], the operator of the vector potential of linearly polariz
light propagating in z direction may be represented as

\:Hv = \98 &E\&a\ G(z,z',w) Mclu

where G(z,2’,w) is the classical Green function that satisfies the equation
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and vanishes in the limit when z — +oo. Here, .w?u,&v is a basic bosonic field, A
denotes a normalization area perpendicular to z, and €;(z,w) is the imaginary part of

the complex permittivity ¢(z,w). Let us now consider a dielectric barrier consisting of
(N —2) layers (N > 3),

N
. 1 fz; <2<z,

e(z,w) = MU\(?.V ¢(w), with Xj(z) = ﬁ 0 oﬁrm.,.swmo !
i=1 u

where €;(w) is the permittivity of the jth layer [£o—= ~ 00, 2y = 00,
Bj(w)+1iv;(w)]. The form of G(z,z’,w) implies that [23]
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where the quasi-mode operators aj 4+ (z,w) and @; _(z,w) are associated with the (damped
waves propagating to the right and left, respectively (for the relations to the basic field
operators f(z,w), see Ref. [25]). In particular when Im[e;(w)] —= 0, then the operators:
@j+(2,w) ~> @4 (w) are ordinary (z-independent) bosonic free-field operators [23].
The output operators a;_(z,w) and an+(z,w) can be calculated step by step start-
ing from a single-slab plate (N = 3). After some lengthy calculation [25] we find that

(sorfome)) )=t (2o Jraw (FD) e
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he input operators ;4 (z,w) and an-(z,w) and _;.5 _uOmou.mo noise operators g+
muting quantities. The nvwnm.oﬂmlmﬁmn. transformation matrix T'(w) aomn:v.mm mwm

ts of transmission and reflection of the input mmEm. m.w&‘ Srmw.on the losses inside
am.oov rrier give rise to an absorption matrix A (w). Explicit expressions for the matrices
%Mﬁvwwum A(w) and the noise operators j1(w) [as linear functionals of the field f (z,w)
inside the barrier] are given in Ref. [25].

where t
are Lo} it}

3. Photon tunneling

To study the influence of dispersion and absorption on wroﬁ.o: tunneling ﬁrno%mr uwcw.
tilayer dielectric barriers, let us consider a two-photon mxwwzami of ar.o Sﬁma escribe m
in Ref. [1] (Fig. 1). Pairs of down-conversion photons are m:moﬁ.ma ‘vw mirrors to _EUEM
on the surface of a 50%:50% beam splitter .&ﬁ ﬁrm. output no.EQmmsnmm are H:Mm.mﬁm .
One photon (I) of each pair travels through air, while the noEcmmHm,vUoﬁoa (II) passes
a barrier. The coincidences attain a minimum when .aro two photons .€m<mvwm_8$. over-
lap perfectly at the beam splitter. This can be achieved by ﬁmnm_wism a prism in one
arm of the interferometer in order to compensate for the delay owing to the barrier.

PD, Fig. 1. Scheme of the two-

photon interference experi-

B ment (1, 2] for the deter-

mination of photon traversal

times through multilayer 'di-

PD, electric barriers (L, _.wmmn. P,

prism; DB, dielectric barrier;

DB BS, beam splitter; PDy, PDg,
photodetectors).

Let us assume that the barrier is in the ground state and the two correlated photons
are prepared in a state

= [ da@ | " du £(0)7( - ) 8] ) aly(@ - ) 0) (6)

where () and f(w) are the bandwidth functions of the laser and a.oéz-oonén.mmo.:
photons, respectively, f(w) being centered at b\w.. From photodetection .ﬂrooq it is
well known (see, e.g., [28]) that the overall coincidences m can be obtained as the
time-integrated normally ordered intensity correlation function,

mn%\&H\S (EO0) B (1) B 1) EO(w) ), (1)

where £(®)(t;) and E(*)(t;) are the fields at the detectors in the two output nrw:sm_m
of the beam splitter (£, detection efficiency). Applying the input-output relations (5)
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and using Eq. (6), after some lengthy but straightforward calculation we find that,

muw%\i \ %%@Esr
0

2 !
F(Q) = \o dw| 2 (w) f2(Q~w)| w(Q-w) 12(Q=0) [T12(Q-w) —e 2P 2Ty, ()]

3

9

where s is the translation length of the prism (cf. Fig. 1), and N = \/€h/(4mceg A) A
The translation length s= sg corresponding to the minimum of R(s) is usually ug
to distinguish between superluminal and subluminal behaviour (positive and negati
values of sg, respectively) of the photon passing through the barrier. In the numeri
calculations we have considered H(LH)* structured plates (H, titanium dioxide; L, fuseq

silica) of A/4-layers. The calculation of the function T'(w) follows the lines given
Ref. [26]. A dependence on frequency of the (complex) refractive indices of the laye
has not been taken into account. The line shape function of the exciting laser, a(f
has been assumed to be sufficiently small, so that F(Q) = F(wyp) in Eq. (8), where wy!
the centre frequency (wo =5.37 x 10'%s1). Introducing the single-photon pulse shap
function f(t) = (2)~1/2 f dw exp[~iwt] f(w), we have performed calculations for bot
Gaussian pulses f(t) « expliwot/2 ~ (t/t)?] and time-limited non-Gaussian pulses f(t
ocexp{iwot/2 ~ [1 — [t/(20)]?] 1} if t| < 210 and f(t) = 0 elsewhere, where to = 20fs

Fig. 2. The temporal
AT @ “lead” AT =2sp/c tha
corresponds to the posi:

of R(s) is shown as a
s function of the number
of layers, N =2k 1, fo

. ’ a H(LH)* structured
= plate of A/4-layers of
the type described in
t e Ref. {3]; curve (1): loss:
less barrier (nrtio, =
27 . 2.22, nsio, = 1.41),
. curve (2): absorbing
' barrier Aﬁ.HmOu = &.NN.,
11 21 31 nsio, = 1.41 + Oowﬂw

[27)).

The values of A7=2s4/c that are shown in Fig. 2 are valid for both Gaussian an
time-limited pulse shape functions. From Ar a characteristic traversal time w=lfc—_
A7 can be derived (I, thickness of the barrier). The Fig. 2 reveals that the “lead” of
the second photon, Ar, increases with the number of layers of the barrier, N =2k +1,
and tends to a linear function of N. Disregarding the losses, its slope is simply given
by the inverse velocity of light in vacuum, which indicates that 7 is independent of N:
The effect of losses is seenl to decrease this m_ovownanomznnmm&md.

g ..“ The inte
- UO:E&&H%,
e ;ﬂ—ubm. For t
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rval of N in which A7 (linearly) increases with N is limited by an upper
which depends on the pulse shape function of the .vroﬁou at the entrance
he system under consideration the Increase Om. AT A.z:..r N ends when N &35
Jess barrier) or N ~41 (absorbing barrier) for the a:do.._::;a& pulse, ﬁ?wmmmm for
(lose mmmmmmms pulse the boundary value of NV is substantially increased. The increase of
.a_m Q.NM N is of course not in contradiction to causality, but can be explained by a shift
B...”\ u ulse maximum towards earlier times owing to pulse reshaping in the Umﬁ.ﬁa..
wn.aﬂ.ﬂw spectral line shape function of the outgoing photon, f(w)« flw)Ti2(w), S._dnr
rnamz?mq depends on the two competing quantities f(w) and ﬁmfv. can essentially
iffer from that of the incoming photon. For sufficiently large N ar.o incoming and out-
& ing photons’ wavepackets lose all resemblance to each other. In this case the Bmmms.ﬁom
no.znm&oaomm are expected to be a more or less complicated function of the translation
W_“mzr the structure of which does 10». w:ws one to aom.:m uniquely a traversal time.
From Fig. 3 we see that with increasing N interference fringes are observed. They cor-

R (normalized)
1

Fig. 3. The (normal-
ized) coincidences R(s)
are shown in depen-
dence on the transla-
tion length s for a time-
limited pulse of the in-
coming photon (2t =
40fs) and various num-
bers of the layers of
an absorbing barrier:
N =11 (dotted-dashed
line), N =41 (full line),
N = 49 (dashed line).
The data of the absorb-
ing barrier are the same
as in Fig. 2.

-100 -50 50 Hmo
2s/c (fs)

respond to various possibilities of overlapping of the undisturbed and the multi-peaked
outgoing photons’ wavepackets at the beam splitter. .

Compared to a time-limited pulse, the wings of the spectral line shape mﬂbns.o:
f(w) of a Gaussian pulse decrease substantially faster. Hence, the transformed line
shape function f(w)Ti2(w) of a Gaussian pulse reflects the frequency response of the
transmittance of the barrier, Ti2(w), less sensitively than that of a time-limited pulse.
This explains the above mentioned difference in the boundary values of N.

4. Summary and Conclusions

On the basis of a Green function approach to the quantization of radiation in inhomo-
Eeneous, dispersive and absorptive linear dielectrics we have derived quantum optical
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input-output relations for optical fields at multilayer dielectric plates, which are gene
alizations of unitary transformations. Applying the theory to photon tunneling erwozmm
absorbing barriers, we have shown that relatively small imaginary parts of the refractiy
indices of the layers can already give rise to observable effects in two-photon interferencg
experiments as performed recently.

The results reveal that only up to an upper boundary value of layers the measuyr,
coincidences can be used for extracting from them a characteristic time that may }
regarded as traversal time. The boundary value sensitively depends on both the spect;
line shape function of the photon at the barrier and the dependence on frequency
the transmittance of the barrier, which can be substantially different for absorbing anf
non-absorbing barriers. For sufficiently large numbers of layers the photon’s wavepacke
can be distorted in the barrier to such an extend that the observed coincidences sho
a number of interference fringes which correspond to different time constants.
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