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QUANTUM CONTROL OF CHAOS INSIDE A CAVITY!

M.Fortunato?, W. P. Schleich?
Abteilung fir Quantenphysik, Universitat Ulm, Albert-Einstein-Allee 11
D-89069 Ulm, Germany

: G. Kurizki
Department of Chemical Physics, The Weizmann Institute of Science
Rehovot 76100, Israel

Received 31 May 1996, accepted 7 June 1996

By sending many two-level atoms through a cavity resonant with the atomic tran-
sition, and letting the interaction times between the atoms and the cavity be
randomly distributed, we end up with a predetermined Fock state of the electro-
magnetic field inside the cavity if we perform after the interaction with the cavity
a conditional measurement of the internal state of each atom in a coherent super-
position of its ground and excited states. Differently from previous schemes, this
procedure turns out to be very stable under fluctuations in the interaction times.

1. Introduction

In the last decade, a great deal of attention has been dedicated to the problem
of quantum state preparation [1-5], since the availability of non-classical states can
allow the investigation of fundamental problems in Quantum Mechanics [1]. Among
them, Fock states [2] are particularly intriguing because they do not present intensity
fluctuations. Two major approaches to achieve this goal have been proposed: the first
one is based on unitary evolution [3], that is on finding the right Hamiltonian which
evolves the initial state to the desired final one. The second approach is based on the
conditional measurement {CM) scheme [4] in which the desired state is achieved after
a measurement is performed on one of two interacting systems. The CM approach has
the disadvantage that unsuccessful runs (experiments in which the measurement does
ot give the right result) must be discarded, and therefore it has a success probability
which is always less than unity. On the other hand, it has the clear advantage of a
simple Hamiltonian evolution, as, for example, the Jaynes-Cummings model.
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In this paper, we present a new scheme which-—differently from previous ones Hm w
allows the preparation of Fock states inside a cavity in the presence of even large f;
tuations in the interaction times between the two-level atoms and the cavity field 0
is based on the CM approach and on the quantum interference between the twg i
sible final states of the atom. The presence of both these effects performs a strg
suppression of the fluctuations in the atomic velocities, and makes the convergence
the photon-number distribution towards that of a number state possible.

Our proposal connects as well to the recently introduced field of chaos contro] 16
In fact, it has been shown theoretically and experimentally that it is possible to
the extreme sensitivity of chaotic systems to stabilise regular periodic orbits in th
chaotic dynamics. The classical version of our model, implemented via non-selectj
measurements (NSMs), is indeed chaotic even for a small spread in the interactiy
times [5]. Our CM scheme could then be interpreted as a “quantum way” of controll
chaos. In this view, our method is a new scheme which can effectively restore fix
points in the quantum dynamics of a classically chaotic system.

2. The model

i

We consider a model in which many two-level atoms are sent through a cavity whos
frequency is resonant with the atomic transition. The atoms cross the cavity sequentially
(one at a time) so that at most one atom is present inside the cavity. In the general casef
the atoms are initially prepared in a coherent superposition of their ground and excited
states [7] with the help of two classical fields E; (resonant) and FEs (non-resonant)
After the preparation, the state of the kth atom is _&mvv = QM&_& + FM_V_.QV , where |g
and |e) are the ground and the excited state of the atom, respectively. On the oth
hand, the cavity field is initially prepared by a classical oscillator E3 in a coherent state!

o) = > dD[n) = exp Alﬂ.v 3 Qw“__:v .

The interaction between the atoms and the cavity is described [8] by the nommb.x

Jaynes-Cummings model, namely, the total Hamiltonian of the system (atom and ma
is given by

a= wm&& +hw (ata) + hg (alé_ + ady) = Ho+ Hine
where w is the resonance frequency of the atoms and of the cavity, @ and a! are the usus
annihilation and creation operators for the field mode, &; are the Pauli onoumnoﬁwmb
Hine = hg (@'6_ + aé4) .In Eq. (2) g denotes the coupling constant between the atoms
and the field mode. The atoms are detected, after they have passed through the cavity.
in the coherent superposition _&M\ vv = QMH v_av + FmH ) |9} , again thanks to two classical
fields with which the atoms interact after they exit the cavity: E4 (non-resonant) and
Es (resonant), like in the preparation region but in reverse order [7].
The problem is such that it can be treated iteratively, finding the recurrence relation
between the coefficients of the Fock basis expansion of the field state inside the cavity

Eq. (1)
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the interaction and the conditional measurement of the kth atom and the corre-
sfter - coefficients before [after the (k — 1)th atom]. Then, by repeatedly m.%ﬁq_:m
%ou%umn:ﬁaanm relation, we can compute the coefficients in the number basis of the
such 2 MM state (after a sequence of N atoms), starting from the initial coherent state,
final i For convenience we will work in the interaction picture [where Hip is regarded
wra m.im_.@oaon part of the Hamiltonian (2)], and we will assume that the mmmo=m.a
-MEm E., E3, and Ej are phase-locked. In what follows we neglect spontaneous emis-
m. Amw:mm the transit time of the atoms is much smaller than the typical decay time)
n_ow any dissipation inside the cavity, assuming that the time required for the whole
”nancmsom of atoms is much smaller than the cavity lifetime. . .
Computing the evolved atom-field msnwum_mm state through the unitary evolution
iven by the Hamiltonian (2), and then projecting it onto the final atomic state, the

M:oism recurrence relation between the state of the field |¥x) =3, &M.S_:v after the

kth atom and the corresponding state after the (k — 1)th atom can be found

k n—

i : i * — . (3 * k-1
= P {[alDaf O 4 AR CE] D i S0, D

8o sl 0L 3)

where C$) = cos(gmevn + 1), S = sin{grev/n + 1), and Py is the success probability
of the CM, which is given by the norm of the projection onto the final atomic state. In

Eg. (3) it is understood that &@M D=y

3. Field state dynamics in the presence of random fluctuations

In this section we study the behaviour of the final field state (after many atoms
have passed through the cavity) when we allow a spread in the atomic velocities, that
is in the interaction times of the atoms with the cavity. The JC model has already
been proposed [5] for the production of Fock states of the electromagnetic field inside
a cavity, in connection with NSMs. That model, however, is very sensitive to even a
small spread in atomic velocities [5], which eventually makes the system escape any
fixed points in the evolution of the photon number distribution. As a consequence,
such a scheme—notwithstanding its great pioneering value—is of no practical use in
the production of Fock states, since any velocity selector for atomic beams allows a
spread in the atomic velocities. In that approach, the convergence to a Fock state
is due to the existence of the well known “trapping states” in the Jaynes-Cummings
evolution [8]. However, in the case of |¢) — le) (elastic CMs) or [e) — _nv ﬁum_.m,.man
Ogmv schemes, if the interaction times 73 fluctuate randomly with k, there is a critical
value of the spread At above which the number distribution will broaden rather _&md
converge. We can estimate this critical value A7, as the difference between the trapping
and the anti-trapping interaction times for a given n (8], namely,

ks

™ 4 _
g/n+1 29/n+1 20/n+1’

(4)

At =
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Fig. 1. Evolution of (n) and An versus k (number of atoms) in the scheme of elastic CMs it
the case of a large spread (At = A7) in the interaction times. The initial coherent stat,

la) = [3).

where the sub-ensemble of |¢) ~+ |e) CMs has been considered. This phenomenon
is shown in Fig. 1, where we plot for AT = Ar, the mean value (n) and the rms
spread An = ((n?) — (n)?)"/? as a function of the number of atoms injected into:the
cavity in their excited state and detected afterwards in the same excited state. Even’
though for A7 « A7, a convergence towards a Fock state is still possible, for AT x
At such a convergence is completely destroyed: the system escapes every fixed point;
because the trapping condition is different for each atom. In spite of this, we will show:
that it is possible to restore the convergence to fixed points even for large fluctuations
(AT > Ar.), if we allow the presence of quantum interference between the sub-ensembles
le) = le) and [¢) — o).
We explain this effect with a simple argument. Let us suppose that the initial staté

of each atom is the excited one so that the general transformation (3) simplifies to
&va w ﬁ»lp\u QQME*QM»V&M‘aluv o f M\V*MM@H&M.»IIML _

where the coefficients of the final atomic superposition are expressed [9] in terms of th
Rabi frequency SMH ) and of the interaction time H»Q ) with the resonant classical m&

m_m NOOOHmem to QM.D = COS Abmﬂ\v”ﬁm\v\wv mb& QM.C = sin ASM‘SN‘.\M:\MV mmﬁs . Hm. we ﬁuOﬁ.

and .mwm»lﬁ ~ m.mi“ Eq. (5) approximately reads
d®) ~ P12 cos ASM\VH\MD\M - .ﬁ.»/\:llrfwv dk=1

Since the atoms (with thermal velocity) cross first the cavity and then the classical field,
HM: and 7x in Eq. (6) are correlated, even if they are random. This yields a strong
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Fig. 2. Convergence towards a Fock state—even for a large spread in the interaction times—in
the scheme |e) — |e) + |g). Top: behaviour of {n) (left) and An (right) versus k (number of
atoms) in the case of fixed interaction times; middle: the same for small fluctuations in the
interaction times (A7 = A7./10); bottom: the same for large spread in the interaction times
(A7 = 2A7.). In all cases the initial coherent state is Ja) = |+/21).

suppression of the fluctuations in the argument of cosine in (6). This is shown in Fig. 2
where we plot (for the scheme |e) — |e) + |g)) (n) and An for fixed interaction times,
and for small and large spreads in the interaction times. Notwithstanding the large
fluctuations, the convergence towards the desired Fock state is still very good. This is
confirmed by the final photon-number distribution P(n), which corresponds to that of
a number state: all the P(n) vanish except one, P(21) = 1.

4. Discussion and Conclusions

In this paper we have presented a novel scheme which is able to produce preselected
Fock states inside a cavity in which a coherent state was initially prepared. The fi-
Dal number state is achieved by sending many two-level atoms in their excited state
through the cavity and by performing a conditional measurement of their internal de-
Eree of freedom in a superposition of the ground and excited states after they leave
the cavity. The proposed scheme—differently from previous ones [5]— is quite effective
and immune even to large fluctuations in the interaction times between the atoms and
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the cavity field. This is achieved essentially thanks to two basic ingredients: Amv.a
conditional measurement of the final state of the atom, and (b) the quantum interf,
ence between the two possible atomic states ([e) and |g)) after the interaction with §
cavity. Since the classical NSMs counterpart of our model is chaotic (in the regim

random interaction times), and has a quantum dynamics similar to the classica] A.E
such a striking behaviour suggests an analogy with recently proposed methods (6]
controlling classical chaos. These methods, mainly based on classical feedback, use

extreme sensitivity of chaotic systems to small perturbations in order to stabilise regyl,
periodic orbits in the chaotic dynamics. In this perspective, our method can be cops
ered as a novel (fully quantum) way of stabilising—even for large fluctuations—g
points in the quantum dynamics of a system which is classically chaotic. :
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