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Recently, Torgerson and Mandel [1] have reported a disagreement between two
schemes for measuring the phase difference of a pair of optical fields. We analyze
these schemes and derive their associated phase-difference probability distribu-
tions, including both their strong and weak field limits.

1. Introduction

Lack of a canonical pair for the number and phase operators, 7 and é, has led to
much debate in quantum mechanics for many years now [2]. A more recent approach
to the phase question involves concentrating more on what the experimentalist actually
does: If his goal is a precision measurement then he can perform “any” measurement
followed by data analysis to extract a classical parameter [3], for instance phase shift in
an interferometer. Alternatively, he may mentally lump together the measurement and
data analysis to construct an operational phase operator for his specific setup. This
latter approach has been championed by Mandel and his coworkers [4]. The explicit
construction and investigation of the properties of such phase observables can give us
insight into the nature of quantum states.

Recently, Torgerson and Mandel [1] have compared two schemes for measuring the
phase-difference between a pair of optical fields. They found that a direct scheme, where
asignal is beat against a second one, and an indirect scheme, where the two signals are
beat against a common local oscillator, yield different probability distributions for the
measured phase-difference. In particular, they found that the schemes gave radically
different distributions for very weak signals. Torgerson and Mandel take the conflicting
Tesults as evidence of the non-uniqueness of quantum phase. In their analyses ambiguous
@mnm is discarded. This post-selection procedure has generated some discussion in the
literature [5]. We analyze these two schemes in the absence and presence of this post-
selection and discuss its interpretation. We study limits for both strong and weak signals

F these schemes and give closed form expressions for the phase-difference probability
distributions.
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Fig. 1. Direct measurement scheme: A single eight-port homodyne detector is used to measure
the phase difference between two optical fields 3; and B2 which are beat against each other
directly. The input field 3, is phase shifted by an angle 8. For each value of 4, the detectors
D3, D4, Ds and Dg measure the photon count differences n43 = ng — ns and ngs = ng — ns.

2. Schemes

In this section we briefly describe the direct and indirect schemes proposed in Ref. {1
and derive analytical expressions for the corresponding phase distributions

A. Direct measurement caly
The first scheme summarized in Fig. 1 uses a single eight-port homodyne detector
to beat two coherent states |8;) and |G;) against each other. In this case the ‘input’

state is [thin) = [51) ® [0) ® |B2) ® |0), and the ‘output’ state Just before photodetection
reads L

[Pour) = |3(B1 = B2"))3 @ |1(B1 + B2e™®))a @

|3 (=iB1 + B2¢))s ® |1 (~if1 — Bae’®))s.
The additional phase shift § was introduced in Ref. [4] in order to smooth out the @mu
distribution obtained for weak fields as we discuss below.

The joint count probability for the differences ny3 = n4 — ng and ngs = ng — ng
the photocount distribution is .

W (nas, nes| ') =

1
MU [(ns, na, ns, nlvou))’ ,

n3,14,15,n¢

Srmmmmcaamaosm%zogm c% MU\ wwmwmlozz&mgmx&%moumsowmEuw:a:mm. H.w
summations have been previously computed [6] and we find -

W (na3, nes| €) = Wa(nas| €)Wy (nes| e),
with

a3

i -1 + B2et? ;
Wstnal ) = =iy | BB o 4167 - 836

Q~ - Qmm..m

and
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Here 1,(#) denotes the modified wmmmm_ function of order v. .

The (n4s, n6s) pairs are the axvmzaoz.ew_ data and UV.\ nou._ms.:ns.o: represent (z,p) =
(rcos p,Tsin ) pairs on phase space. Since the data is m_mnamﬁw it “Bmvm.ﬁo a _.mm:_mm
Jattice of points on phase space. This would correspond to a A.m_u:n.% ﬁ.rmnw._v:sos mn .
However, Ref. [4] introduced a clever trick to smooth out this a_mﬂzvaroa“ Shifting
field B2 by 0, associating each pair of data with Tu.?ﬁ& H.T. cos(p — 8), rsin(p — 6)),
and finally averaging over §. For each (n43, nes) pair this yields

We(nes|e®) = e 3UAI+HAI

2n
1

o
0

W nisines (2, P) df Wa(z cos0 — psin | e*?) §(z cos 8 — psin 8 — ny3)

xWs(pcost + zsinf|e*?) §(pcos b + z sin § — ngs)
= W Ws(nas| (nas + ings)(z — ip)/r?)
x Ws(nes| (nas + ines)(z — ip)/r?)d(nfs + nis — r°). (6)

Summing over all possible sets of data and integrating out the radial variable yields
the general expression for the phase distribution

[o 0]
M..U \a dr W 45.nes (T COS 0, rsin ¥)

Plg) =
The3,Mes
= w|~- MU W3 A:Au_ (naz + s.:mmX:Mw 4 :Muvl\m ml..sv
i N43,Nes
x Ws Azmu_ (s + s.zmmX:Mu + :val\m alsv . )

where the distributions Wa and Wj follow from Egs. (4) and (5). .

So far the expression Eq. (7) for the phase distribution is exact. In order to gain
some insight, and in particular to compare the two schemes we now consider two limiting
Cases.

A.1. Strong field limit
When one of the fields, say s, is strong that is 1 < |82 and |A:]| < |B2], we can
Use the known result for the strong local oscillator limit {6], where 5 plays the role of
the loca] oscillator. In this case, the phase distribution reduces to
[e o

P(p) = .Hn\ &ﬁmxvﬁlTSmﬁl_mﬂ_oOm@mI&_;n

T
0

~ [rsing - |&1|sin(¢2 - ¢1)]°}, (®)

Where g, 1Bile’®s, for j =1,2.
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Fig. 2. Indirect measurement scheme: A pair of eight-port homodyne detectors is used’
measure the phase difference between the optical fields 8; and B;. Each field is beat againg|
a common strong local oscilator a. Each eight-port detector has four detectors measuring the
photon count differences n4s and ngs. Two phase distributions are obtained and combined to
give the phase distribution for the phase difference.

A.2. Weak fields limit
When both fields are weak, that is |8;| <« 1, and [82] < 1, the summation in MP,QV
has only contributions from those terms in the lowest order in the coherent states
amplitudes |8;|. Hence only terms with ny3 = —1,0,1 and ngs = -1,0,1 contribut
and we arrive at 1 :

Plg) = 5=[1+ 2811182l coslp + 61 ~ 6] (

up to corrections which are quartic in |3;|. Here we have used the relation

I(z) ~ s Amvw.

AT

This approach keeps all data—even when it is ambiguous. By contrast, Mandel an
coworkers have consistently recommended discarding such data in their approach't
defining an operational phase operator. Indeed, the distribution of Eq. (7) may be used
to define a POM for the operational phase even with the ambiguous data included [7

If the ambiguous data, having n4s = nes = 0, are discarded the phase distributio

becomes Plg) = i AH N 2cos(p + ¢1 — ¢2) v
= o [B1l/1Ba] + 1821/ 1811 )

to lowest order, which is exactly the result obtained by Torgerson and Mandel [1]."

B. Indirect measurement

The indirect measurement scheme consists of two eight-port homodyne detectors,
each performing a measument of the phase distribution for one of the coherent fields
relative to a common strong local oscillator, «, as seen in Fig. 2. Since the phase distrl-
butions are completely independent from each other, we can write the joint distribution
as

Pp1,02) = Pi(p1) P2 (). (11)
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stribution for the phase difference ¢ = ¢1 — @2 is the convolution

.Hrw di
27
P(y) = \&ﬁ Pi(¢1), Pa(o1 — ) (12)
0
where
Pi(pi) = W\ﬁ. dr; ovaIT,. cos p; — |Bi] cos{¢o — &..;u
0

~[rising; — || sin(do — 4:)]" } (13)

is the phase distribution in the strong local oscillator limit, Eq. (8), for each mo_.a and
¢o is the phase of the local oscillator. Evaluating the integral in Eq.(12) we obtain the

expression

00 8
P(p) = 2 emimiP-loal? \J dry \J dry eV I (21 By + raBae ) (14)
0 0

™

for the phase distribution of the indirect measurement. Again we now consider the
limiting cases of this exact expression.

B.1. Strong field limit . .

In the case when f is strong but still much weaker than the local oscillator, .era
is 1 € |B2] € @ and |41] < |P2l, Eq. (14) approaches the result .mwn. (8) for the direct
measurement very quickly. This behaviour can be seen from Fig. 3, where we have
plotted both expressions for |82/f;| = 4. For higher values of 2| the two curves
coincide.

B.2. Weak fields limit
In the case when both fields are weak, that is when |81]| € 1 € a and |f2] € 1 K a,
the integral in Eq. (14) is easily performed and yields
1

P(yp) ~ = T + W_F__uu_noiﬁ +é1— ﬁwv_ (15)

to lowest order for the phase distribution. .

We conclude this section by noting that, in contrast to the direct measurement, in
this indirect measurement the contribution from ambiguous data is always negligible
due to the presence of the strong local oscillator.

3. To post-select or not?

In Section 2A we have discussed two possibilities of data analysis and have shown
the phase distributions corresponding to retaining or discarding ambiguous data. In
this section we briefly return to this point.
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Fig. 3. Comparison between phase distributions for both direct (solid line) and indirect mea]
surement (dashed line), in the strong field limit. In this limit, the phase distribution of
direct scheme follows from Eq. (8), whereas for the indirect measurement, we have used,
general expression Eq. (14). For both curves we have chosen 8; =1 and 3; = —4.

The data analysis used in Eq. (6) may be compactly summarized by considering ﬁ.
distribution for the random variable Z = f(X,Y) given the distribution P(X,Y) f
the random variables X and Y. This can be written as

P(Z) x \ dXdY5(Z - f(X,Y))P(X,Y).

When the data, which in this case is a pair (X, Y), unambiguously determines Z the
above formula is trivial; however, when the data leads to no single Z the above re
spreads the probability evenly amongst the consistent values. .

In contrast the approach used in Ref. [4] discards data obtained for n43 = ngs
The excluded data does not appear to be very useful for informing us about Urw
Thus, it is justifiable to select only the unambiguous data as has been done in Ref. |4
However, a comparison of the behavior of the direct scheme without and with postse
lection for weak fields, Egs. (9) and (10) respectively, shows that the latter has a Si
nificantly narrower distribution. How can we reconcile this with Shannon’s informatior
theory which teaches us that we cannot improve sensitivity by discarding informati
It must be that the apparent difference in widths—and naively sensitivity—for the
two distributions is in some sense illusory. The resolution to this ‘paradox’ is that ¢
discarded data carries information about the overall resources used which would need
to be factored into any meaningful measure of sensitivity. The deeper question of h
we may compare phase distributions between different schemes, with respect to the €08
of resources involved, is beyond the scope of this paper.

4. Conclusion

We may generate the distribution for the relative phases of a pair of coherent states
B and B2 using the direct or indirect schemes described here. When at least one of ‘the
fields is strong these schemes are indistinguishable. By contrast, for weak fields the
schemes lead to slightly different distributions. Retaining or discarding ambiguous dab
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akes 1O difference in the schemes’ sensitivity. Careful comparisons between these
“&mﬁmm can only be performed in the presence of the costs associated with running
them. Notwithstanding this caution, our results confirm Torgerson and Mandel’s claim
of the non-uniqueness of operational phase operators.
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