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We generalize the Bayesian scheme of quantum inference for a reconstruction of
impure states of quantum systems. We have solved the problem of ambiguity in
a definition of the invariant integration measure in a space of impure quantum-
mechanical states, which has been the main obstacle in application of Bayesian
methods for statistical mixtures [see K.R.W. Jones, Ann. Phys. (N.Y.) 207,
140 (1991)]. As an illustration, we analyze in detail how the standard Bayesian
inference can be applied for a reconstruction of a pure state of a spin-1/2 system.
We also show how this scheme fails when the spin is prepared in an impure state.
We apply our generalized Bayesian inference scheme for a consistent reconstruction
of an impure state of the spin-1/2. In addition we show that in the limit of infinite
number of measurements this reconstruction scheme gives the same result as the
Jaynes principle of the maximum entropy.

1. Introduction

The concept of a state of a physical system represents one of the most important
pillars of the paradigm of the quantum theory [1]. From the mathematical point of
View a pure quantum-mechanical state is represented by a point in an abstract state
Space. Physical interpretation of a state is more trickier [1): the state is understood
a8 an ensembie of identically prepared quantum-mechanical systems. One of the most
Important problems in quantum mechanics is how to specify (i.e., how to reconstruct)
the density operator describing an ensemble of systems obtained via the particular
Preparation procedure. If no a priori information about the state is available then a
Complete reconstruction of the density operator of the quantum-mechanical system can
be performed providing all mean values of a complete set of physical observables (i.e.
the quorum of observables [2] which corresponds to a reconstruction on the complete
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observation level [3]) associated with the given system are measured. When a complete
set of measurements over the system is performed then a complete reconstruction of

well known examples are (1) the optical homodyne tomography [4] (here the data are
obtained via the measurement of probability distributions of rotated quadratures Ev
(2) “filtering” of quantum states with quantum filters [6] (here the data are obtaineq
in a process of a simultaneous measurement of conjugated observables [7]). Complete
reconstruction schemes which are based on measurements of either mean values of
physical observables or their probability distributions can be methodologically unified
by the Jaynes principle of maximum entropy (MazEnt principle) [8]. With the help
of this principle a complete reconstruction of the quantum-mechanical state can be
straightforwardly performed. The MazEnt principle can be fruitfully applied also ix
the case when only a subset G, (v = 1,..,n) of physical observables (the so called
reduced observation level) is measured. In this case the density operator of the physical
system can be reconstructed on the reduced observation level. This so called generalized
canonical density operator fulfils several conditions. Firstly, its trace is equal to unity’
(Txp = 1). Secondly, Tx{p G.} =G, (v =1,...,n), which means that the reconstructed:
density operator provides us with the measured mean values of those observables which
constitute the given observation level. Obviously, a large number of density operators:
can fulfill these two constraints. So one needs an additional criterion which would
uniquely specify the generalized canonical density operator. According to Jaynes [8]
this operator has to be the one with the largest value of the von Neumann entropy*
S = —Tr{flnp}. This additional condition means that the MazEnt principle is the
most conservative assignment in the sense that it does not permit one to draw any’
conclusion not warranted by the experimental data. :

The advantage of the MazEnt principle is that no a priort information about the}
reconstructed state is needed. As soon as the mean values of a given set of physical ob-
servables are available (i.e., measured) then the generalized canonical density operato
can be (in principle) found. Here we note, that the ezact knowledge of any mean value/®
a physical observable implicitly assumes an infinite number of repeated measuremerts
In practice an observer can perform only a limited number of different measurements
(which specifies a given observation level) on a limited number of elements of the givel
ensemble (i.e., only a finite number of measured events can be registered in a finite
time). In this case mean values of the measured observables are not known exactly an
consequently the Jaynes principle of the maximum entropy cannot be used. What:is
known from the measurement is a specific set of data indicating number of how man
times eigenvalues of given observables have appeared (which in the limit of infinite numz
ber of measurements results in the corresponding quantum probability distributions)?
The question is, how to obtain the best a posteriori estimation of the density operatol
based on the measured data. Helstrom [9], Holevo [10] and Jones [11] have shown that
the answer to this question can be given by the Bayesian inference method providing it
is a priori known that the quantum-mechanical state which is going to be reconstructed
is prepared in a pure (even though unknown) state. Once this condition is fulfilled, then
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the observer can systematically predict ﬁ..w. reconstruct) an a uc.&mlol &mcm.:w opera-
tor based upon an incomplete set of experimental data. HFm density w_wm;ﬁ.g is a@.cm_ .oo
the mean over all possible pure states weighted by a specific probability Emn:g.:;ou in
an abstract state space with the unique invariant integration measure. It is this prob-
ability distribution (conditioned by the assumed Bayesian prior) which characterizes
observer’s knowledge of the system at every moment during the measurement sequence.
We note once again that the Bayesian inference has been developed for a reconstruction
of pure quantum mechanical states and in this sense it corresponds to an averaging over
a microcanonical ensembles. To illustrate this scheme we can imagine a spin-1 /2. The
vmnmaoeln space of pure states of the spin-1/2 is represented by the Poincare sphere
and the Bayesian reconstruction scheme corresponds to a specific averaging over points
(states) on the sphere.

In a real situation one can never design a preparator such that it produces an en-
semble of identical pure states. What usually happens is that the ensemble consists of
a set of pure states each of which is represented in the ensemble with a certain proba-
bility. So now the question is how to apply Bayesian reconstruction scheme providing
the quantum-mechanical system under consideration is in an impure state (i.e. statis-
tical mixture}. To apply the Bayesian inference scheme one has to define exactly three
objects: (1) the abstract state space of the measured system; (2) the corresponding
invariant integration measure of this space; and (3) the prior (i.e. a priori known
probability distribution on the given parametric state space). It is relatively easy to
specify the parametric state space. For instance, in the case of the spin-1/2 which is
prepared in a statistical mixture of pure state this parametric space can be identified
with all points inside the Poincare sphere. On the other hand, no unique prescription
how to specify the invariant measure and the prior for impure states can be found in
the literature [11,12].

The main purpose of the present paper is to show how to generalize the Bayesian
quantum inference for a reconstruction of impure states. The main idea of our approach
is based on an observation that a quantum-mechanical system which is prepared in a
statistical mixture can be represented as a subsystem of a composite system which
itself is in a pure state (for a simplicity we will denote the composite system as S, the
subsystem of interest as P and the additional degrees of freedom will be called as a
“reservoir” R). This means that the Bayesian inference scheme can be safely applied
to a reconstruction of the composite systems. Finally, by tracing over the “irrelevant”
degrees of freedom (i-e., over the reservoir R) one can obtain the reconstructed density
Operator of the subsystem of interest. The only problem in this generalized Bayesian
Yeconstruction scheme is how to specify uniquely the composite system of which our
System of interest is a subsystem. Here we apply the idea of the Schmidt decomposition
(13] which says us that it is suffiecient that the dimension of a state space of the reservoir
Ris the same as the dimension of the state space of the subsystem P. We will illustrate
Our ideas on an example of a reconstruction of an impure state of a spin-1/2. We
Will show how the a priori assumption about the purity /impurity of the reconstructed
scheme can change the a posteriori estimation of the density operator. We will also
show that for specific sets of data the Bayesian reconstruction scheme based on an «
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priori assumption that the reconstructed system is in a pure state can completely f.
In addition we show that our Bayesian scheme of quantum inference mm<&ov&,‘,wo~ !
a reconstruction of statistical mixtures corresponds to averaging over grand canchjeh)
ensemble. Moreover, in the limit of infinite number of measurements the reconstructaq
density operator is equal to the generalized canonical density operator obtained via' the
Jaynes principle of the maximum entropy. : ;
The paper is organized as follows, in Section 2 we briefly review the Bayesian
construction scheme for pure states. In Section 3 we analyze quantum inference in
limit of infinite number of measurements. A simple example of a reconstruction of
states of the spin-1/2 is presented in Section 4. General principles of the Bay
reconstruction of impure states are discussed in Section 5. In Section 6 we anal
reconstruction of impure states of the spin-1/2. ’

2. Bayesian reconstruction scheme

The general idea of the Bayesian reconstruction scheme is based on manipulations wit
probability distributions in parametric state spaces. To understand this reconstructio
scheme we introduce severa] definitions and concepts. Firstly, it is a space of states o
the measured system. Quantum Bayesian method as discussed in the literature [9-11
is based on the assumption that the reconstructed system is in a pure state described
by a state vector [¥) or equivalently by a pure-state density operator £ = )Y
The manifold of all pure states is a continuum which we denote as Q. Secondly, it it
the discrete _space A of reading states of a measuring apparatus associated with : :
observable O. These states are intrinsically related to the projectors \my...o,, where :A{
are the eigenvalues of the observable 0.

The Bayesian reconstruction scheme is formulated as a three-step inversion process
(1) As a result of the measurement a conditional probability :

UAO‘,_ \/._byv =Tr A@»...O»b»v Y
on the discrete space 4 is defined. This conditional probability distribution mnmnmm.own,w
probability of finding the result ); if the measured system is in a particular state’
(2) To perform the second step of the inversion procedure one has\to specify an a pri
ori distribution po(5) defined on the space £2. This distribution describes our EE&,
knowledge about the measured system. Using the conditional probability distributio
p(0, Ailp) and the a priori distribution Po(f) we can define the Jjoint probability distri
bution p(0, A;; p) ;
P(O, ;) = p(O, Ailp)po(5),

on the space 2 ® A. We note that if no initial information about the measured mu‘mnmm“
is known then the prior po(p) has to be assumed to be constant, B
(3) The final step of the Bayesian reconstruction is based on the well known Bayes
rule p(z|y)p(y) = plz;y) = p(ylz)p(z) with the help of which we find the conditional

pro

w_.o
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bability p(p|0, Ai) on the state space Q:

A . NQAO\,q\/:\mv
.\.NQAQ. ym. mv_&b
(2}

(23)

which the reconstructed density operator can be obtained [see ma@»:
Mﬂ the case of the repeated N-trial measurement the _.mno:mﬁcnfos scheme con-
o 3:&. an iterative utilization of the three-step procedure as described above. Af-
88

. ‘ter the N-th measurement we use as an input for the prior distribution the condi-

tional probability distribution which is an output after the (N — 1)st measurement.

v” - However, we can equivalently define the N-trial measurement conditional probability

o({ Y lp) = E? 1 30:»&._3 and applying the three-step procedure (2.1-2.3) just once
3= .
“o mom the reconstructed density operator

[p({ In1p)pda

~ o 2.4
A Py R B

where § in the r.h.s. of Eq.(24) is a properly vmnm:ao«o_.mmmm density wvoaweoH in g@
state space 2. Until now we have not mentioned one mmmm.nSm_ U_A.VEQB in the wwwam_m:
reconstruction scheme, which is the determination o.m the integration measure dq.* The
integration measure has to be invariant under unitary transformations in the space
. This requirement uniquely determines the form o.m the measure. However, this is
no longer valid when we extend Q to the space of mixed states formed by all convex
combinations of elements of the original pure state space Q. Although the Bayesian
procedure itself doesn’t require any special conditions imposed on the mvmoo.b‘ ﬁr.m
ambiguity in determination of the integration measure prevents us to generalize this
method straightforwardly for the case of impure quantum states.

3. Bayesian inference in the limit of infinite number of measurements

The explicit evaluation of the a posteriori estimation of :.5 density ovmz;o.a M In is
significantly limited by technical difficulties when integration over ﬁmnwamﬁ_n space is
performed [see Eq.(2.4)]. Even for simplest quantum systems and 2 relatively .m3m=
Dumber of measurements the reconstruction procedure can be practically unrealizable
Problem.

On the other hand let us assume that the number of measurements approaches
infinity (i.e. N — 00). It is clear that in this case mean values of all projectors Aﬁf..o,..v

associated with the observables O; are precisely know (measured); i.e.
M (Py, 0. =, (3.1)

:SN:% authors (see, for instance, Ref.[11]) identify the prior n:mal.v__nmo: .2:7 the integration _.:m”.
sure on the space 2. However, the particular form of dq is wmmon:.wnnn._ with nr.m novomom% and nr.m
Particular Parameterization of the space Q rather then with some prior information po(p) about this
System. We will distinguish between these two objects.
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which can be considered as a probability distribution such that Mu.w. Qw.. =1.1In, ﬁ& .
have shown? that in the limit N — oo Eq.(2.4) reads ,

00 =5 [TI[TT8 (1 (B, 008) - ) |
Q J=1

1

where Nj is a normalization constant determined by the condition Tr [6({ } gt

The interpretation of Eq.(3.2) is straightforward. The reconstructed density, op;
tor is equal to the sum of equally-weighted pure-state density operators on the manif
€, which do satisfy the conditions given by Eq.(3.1). [these are guaranteed by
functions in the r.h.s. of Eq.(3.2)]. In terms of statistical physics this is an avers
over the microcanonical ensemble of those pure states which satisfy the conditionsig
the mean values of the measured observables. Consequently, Eq.(3.2) represents.t
principle of the maximum entropy on the microcanonical ensemble under the constrainis

(3.1).

4. Bayesian inference for spin-1 /2 pure states

In order to appreciate the beauty of the Bayesian inference for pure states and
understand the complexity of the reconstruction of impure states we present in:thig’
section a relatively simple example of the reconstruction of a pure state of the spin-1/2:
The rigorous way how to determine the parametric state space 2 is based on:th
diffeomorphism between € and quotient space mSi_Q?uc. where n is the number 6
dimensions of the Hilbert space of the measured quantum system. In the particular;
case of the spin-1/2 we work with the commutative group U(1) and the construction:
Q is very simple. The space ) can be mapped into the so called Poincare sphere-and’
the parameterized density operator (i.e. the point on the Poincare sphere) reads:;:
p(6,4) = Hl.._.wh = WC +sinf cos ¢, + sin O sin ¢ G, 4 cos 6 5,), (41
LG

where ¢ € (0,27), 8 € (0, 7). The topology of the sphere determines also the integratior
measure for which we have d, =sinf0did¢. -
One possible choice of the complete set of observables (i.e., the quorum Evmmmo.

ciated with the spin-1 /2 are the spin projections for three orthogonal directions repr
sented by Hermitian operators: v

1 (1—z,) (1—-x, —22..—Fp_3)
mm .\,&HM .\, &Hu i .\4
0 0 (1] S
) - e o N . P . £ delt.
a; satisfying the condition MU~ a; =1, tends in the limit N — oo to the integral of a product o
1 (1—=zy) (l—zy—z3...~z,_5) ,‘

o\ drg ... .\

0

&H:I»HMSZHMDUZ e Zp I (L= 2o~ 2p )™ N with coefficients

A
iz
functions: .\&HH

drn_18(zy — 01)8(xp — o2) ... 8(xne1 — an_y)-
0
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oy p via pure-state reconstruction | j via mixture-state reconstruction
1+ 36, 1+ 36,
1+ 26, i+1ls.
i+ls, 1425,
i1 45, P45,
= = =
: i N A
2 - 26 ~ 68 -~ ) 158 -
4 1+86.+ %5, i+ 3050z + 3050
4 o 60 ~ i ~ o
151 1 nwmw ¥z + 35010+ Lt 10s0s ~+; 1105 ﬂ.m
T t 1— 36+ 36y + 36 1-16,+ sOy 5o
A - 2026 = 2026 ~ 74 dos12 A -
IR A B B g IS T RS - A Fohe A
- z A A 5 o
4‘@» »—rm:ﬁ xﬁm:ﬁ Hl—l _hmﬂmwomw.m Q.Hl—l uwmwwwm—uo.m .IQK+ 169636 Q.« Hl_l 1446325 le—l 1446325 QKI—I 1446325 Q.k
2 413 ~
{ PP 1+ 1o L+ 15450
414 | 74 88 4 {4 3125018 o
thu A&._\ 4 1+ 5770  Fn2ams0z

Tab.1l. Results of a posteriori Bayesian estimation of density operators .....m mww spin-1/2 are
presented for two different cases: (1) when it is a priori assumed .u.wma the spin is in a pure m.nm...m
and (2) when no a priori constraint on the state is imposed. In _.“r_m second case Z‘wm mwuonwrmmm
Bayesian scheme has been applied. The density operators are given up to normalization factor

1/2.

where 6; are the Pauli spin operators. The observables 5; have the spectrum equal to

Hw. In what follows we will distinguish between these two possible measurement results

only by the sign, i.e. s = 1. The projectors m,w_u... onto the corresponding eigenvectors
rexd 1456
5 56y
.NU.«.? = ||M|H.
and the conditional probabilities associated with this kind of the measurement can be

written as

i=2,y2 (4.2a)

.f..
(5,550, 4)) = 2T,

Now using the procedure described in Section 2 we can construct an a posteriori density
operator 5({}n) based on a given sequence of measurement outcomes. In Hw.v._m 1
We present results of the Bayesian inference for the spin-1/2 based on the fictitious
measurements of three spin components performed on three Stern-Gerlach mwvwn.m.e:m@m.
First let us assume that just one Stern-Gerlach apparatus measuring the spin 5, =
/2 is used (i.e., this measurement setup fixes a specific observation level). If the m.amn
Measurement of the spin §, gives us the result 1 (i.e. s = +1), then under the assumption
that the spin-1 /2 is in a pure state we can use the Bayesian mzmmngn.m scheme m:.i we
obtain the a posteriori estimation for the density operator presented in the first ::w OM.
Tab.1. With the increase of the number of measurements we improve the a posteriori
estimation of the density operator on the given observation level. In particular, let us
assume that in twelve measurements we have detected ten spins up and two spins down
(Le. %S%Y The corresponding a posteriori density operator is presented in Tab.1. If
We use the outcome of the twelve measurements then we can approximate the mean

(4.2b)

i==zx,y, 2.
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value of the operator ¢, to be equal to 2/3. If this would be a “true”mean valye :
obtained in an infinite sequence of measurements) of the operator &, then with hel
the Jaynes principle of the maximum entropy we would find for the density operats
the expression j = wﬁ + mm.L.
. We can extend the observation level and we can consider also the measurement of th
Spin components §; and 3y. In Tab.1 we present results of “numerical experiments” {53
given set of outcomes. In particular, the third line of the table represents the simulat;}
of measurements on the complete observation level when all three spin components
the spin-1/2 are measured. Here we also present a result of the Bayesian infer,
mo~. the density operator. With the help of these results we can also approximat
estimate the mean values of corresponding operators for which we find (6:)=1/3
(62) = (8y) = 2/3. These mean values fulfill the “purity condition” :

(62)? + (6)? +(6:)2 = 1,

which means that the measured state is a pure state (providing the condition (4.3)
fulfilled also in the limit N — oo) Consequently, the Bayesian reconstruction sche:
can be safely used in the limit N — oo and the a posteriori density operator reads

27 @
1 : :
p= N o\&&o sin 6df 6({¢,) — cos 6)8((6) ~ sin O sin ¢)8((6) —sinf cos $)5(0, ¢). (4.4

This expression has an appealing geometrical interpretation: the three é-functions cor
respond to three specific orbits on the Poincare sphere each of which is associated wit
a set of pure states which posses the measured value of a given observable 5;. When wi
substitute the density operator (4.1) into the Eq.(4.4) we find the a posteriori densit
operator in the form

f= w (14 (52)62 + (3,)0y + (62)53) ,

where the mean values of the observables fulfill the condition (4.3). This density opera-
tor describes a point on the Poincare sphere which can be represented as an intersectioi’
of three “orbits” associated with three constraints described by d-functions in m@?.&
If the three orbits have no intersection reconstruction scheme fails. Consequently, there
does not exist a pure state with the given mean values of the measured observables: Ini
the second part of Tab.1 (below the double line) we present a numerical simulation of
the measurement in which all three observables are measured. The first sequence of thy

estimation the mean values of the operators &, and G, are equal to zero (each of the
spin components is measured “up” the same number of times as “down”). On the other’
.rm:a from the measurement of the 0, component one can make a simple estimation that
:H.m mean is equal to 1/2. But the Bayesian inference gives the result equal to 101/161
(i-e., this number is larger than 1/2). Moreover, with the increase of the number of th .
measurements Bayes estimation deviates even larger from what would be the estima-
tion based on the Jaynes principle. The reason for this contradiction lies in the a priori .
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: assumption about the purity of the reconstructed state, i.e. the mean values of the spin

mponents do not fulfill the condition (4.3) and so the Bayesian method cannot be
€0l lied safely in the present case. The larger the number of measurement more clear
MMM inconsistency is seen and, as seen from Eq.(4.4), in the limit of infinite number of

; B@wmc_.mam:am the Bayesian method fails completely. On the other hand the Jaynes

method can be applied safely in this case. The point is that this method is not based
on an a priori assumption about the purity of the reconstructed state. The Jaynes
principle is associated with maximization of entropy on the grand canonical ensemble
which means that all states (pure and impure) are taken into account. This, obviously,
is an advantage of the Jaynes reconstruction scheme. Nevertheless this method can be
applied only when “exact” mean values of observables are known.

5. Bayesian reconstruction of impure states

If a quantum system P is in an impure state we can consider it as being entangled with
some other quantum system R (reservoir). We assume a system S (composed of P and
R) which itself is in a pure state |¥). The density operator pp of the system P is then
obtained via tracing over the reservoir degrees of freedom:

pp="Trr [psl;  ps = [UNT]. (5.1)
Once the system S is in a pure state, then we can safely apply the Bayesian reconstruc-
tion scheme as described in Section 2. The reconstruction itself is based only on data
associated with measurements performed on the system P. When the density operator
Ps is a posteriori estimated then by tracing over the reservoir degrees of freedom we
obtain the a posteriori density operator jp for the system P (with no a priori constraint
on the purity of the state of the system P).

To make our reconstruction scheme for impure state selfconsistent we have to chose
the reservoir R uniquely. This can be done with the help of the Schmidt theorem (see
Ref. [13]) from which it follows that if the composite system S is in a pure state |¥)
then its state vector can be written in the form:

M
¥ = Mun_._Q..vw ®1Bi)r, (5.2)

=1

where les), and |6;) = are elements from two specific orthonormalized bases associated
with the subsystems P and R, respectively, and c¢; are appropriate complex numbers
Satisfying the normalization condition ¥~ |c;|2 = 1. The maximal index of summation
(M) in Eq.(5.2) is given by the dimensionality of the Hilbert space of the system P.
In other words, when we apply the Bayesian method to the case of impure states of
M-leve] system, it is sufficient to “couple” this system to another system, which has
effectively the same number of levels. Due to the fact that we measure only observables
of the first subsystem P particular form of states [4;),, of the second subsystem R does
Dot affect results of the reconstruction.
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6. Reconstruction of impure state of spin-1/2

We illustrate the Bayesian inference scheme for impure states on an example of the spiy
1/2. Following the general idea described in Section 5 we have to oo:mao,m %So spins-1},
One of these spins represents the reservoir. Here the state space b. Ui} _c?r.s
parameterized by six coordinates (we note that dimg = dimgy (n) —dimy (n-1), formm
details see Ref.[14]). In order to parameterize properly the state space Qs we useith
Schmidt decomposition and we represent the state vector |¥) describing two spins-

|¥) = Al11) ® |12) + B|01) ® [02),

where [0;), |1;), are two appropriate orthonormalized bases in H? and \r.m are tw
complex numbers satisfying the condition |A|? 4+ |B|? = 1. The corresponding densit
operator of a pure state in Q5 then reads

p = AP L)1 ® [12)(1a] + AB*|11)(01] ® [12)(02

+A* B|01)(11] ® [02)(12 + | B*[01)(01| @ |02)(021. _
s -y =i 2 TN ) NP

Projectors in the Hilbert space H? read (1 — q..évqcvv or (14797, [j = 1,2], where
71 and #® are two arbitrary unity vectors. The operators 10;%(1;} and _EXP._QME

. . : i =(3) , iy 2

determined with the help of the identity 105){1;1(1 + H:ﬂ ’ N0 = (1 - A9)a
This gives us the relation |1;){(0;] = m..sAMC.VWCV + %E%SY mmmm.ﬁro <m.oﬁo~m wc.v Pﬂo
two arbitrarily chosen unity vectors which satisfy the condition EU) 1 79 and I9) are
equal to vector products [U) = #4) x k), Using the parameterization |A| = cos(a/2

and |B| = sin(a/2) we find § in the following form [14]: )

el Mge 2 A& i
HW~+1 TRT a.+8mAQ;s R n

\mﬁQ.ﬁ\q&Hu%Hu&MuQNV = 4 4

VG k25 5 e s
4 B 4
where ¥, ¢1, ¢2 € (0,27); @, 6,0, € (0,7) and

WG e2e Wi k@3
4

a —sin(a)sin ¢ ﬁ +

+sin(a) cos ¢ ﬁ y

9 = (sin ¢, — cos ¢;,0), ) = (cos 8; cos ¢, cos §; sin ¢, —sin b;)

) = (sin8; cos ¢;,sinb; sin ¢, cos ;).

Once we have parameterized the state space Qs and the corresponding density oper
tor we have to find the invariant integration measure dn. In differential geometry th
integration measure is a global object - the so called invariant volume form w. Th
condition that dg is invariant under the action of each group element U € SU A:vw
equivalent to the requirement that the Lie derivative of w with respect to the ?:mm.
mental field of action of the group SU(n) in the space  is zero. This formulation 01"
the problem how to find the integration measure leads to a system of linear differential #
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uations [14]. We note, that even for this relatively simple quantum system particular
MM_nEmao:m are technically quite complicated [14]. However, the result is simple:

dq = cos? asin arsin 6, sin 0y dadipd,df, ddodb,. {6.5)

.Hra observables associated with the system P in analogy with Eq.(4.2) do read:
. .

WM: = Q.a% » s.”H\._w\uN. ﬁ@@v
The projectors and conditional probabilities associated with the measurement of the
system P are defined as:

. i+ s6; A (1) - 1 cos(a
P =00e1 g il )= bes2l g

Now we can apply general rules of Bayesian inference presented in Section 2 and we
can evaluate the a posteriori estimation for the density operator ps from which we
find the density operator of the system P. In Tab.l we present results of numerical
reconstruction of the density operator of the spin-1/2. This reconstruction is based on
exactly the same set of data as discussed is Section 4. The only difference consists in
different a priori assumptions. In the first case we have assumed that the spin-1/2 is
in a pure state, while in the second case we have lifted this constraint. We see that the
results of the a posteriori estimation do differ, which 'is caused by a different topology
of state spaces on which the estimation (reconstruction) is performed. If the measured
data are consistent with the a priori assumption that the reconstructed system is in
a pure state then both reconstruction procedures work ‘well {except the convergence
is slower in the case of the second method, i.e. more data are needed, because less
a priori information is available). Nevertheless the power of the second (generalized
Bayesian inference) is seen when the reconstructed system is in an impure state and a
large number of measurements has been performed. In this case the standard Bayesian
Teconstruction fails (see Section 4) while the generalized Bayesian inference gives us a
consistent result. In particular, in the limit N — 0o we find for the density operator of
the system P the following expression

n

m Ns.
mH %\Q»&@\&?\.&b?&? QQWNVI@nOmmEA%uvI@mmnmmE&
o
41 D i

Xd({65) — ysinfcos #)(1 + ysin 6, cos ¢,6 + ysinbsin¢,6y + ycos6,6,), (6.8)

where y = cosa. Straightforward calculation shows us that the equation (6.8) leads to
€Xactly the same result as the standard Bayesian estimation given by Eq.(4.5) except
there are no restrictions on the mean values of spin operators. Therefore this operator
€an describe pure as well as impure states.
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7. Conclusions

In the present paper we have generalized the standard Bayesian scheme of quanty}
inference for a reconstruction of impure states of quantum systems. We have soly,
the problem of ambiguity in a definition of the invariant integration measure in a Spaca
of impure quantum-mechanical states which has been the main obstacle in applicatig;
of Bayesian methods for statistical mixtures [11]. As an illustration, we analyzed
reconstruction of states of the spin-1 /2.

Finally we note, that the form of the integral in Eq.(6.8) indicates that the equal.
weighted averaging in the generalized Bayesian scheme is performed on the grand canop.
ical ensemble (i.e., in the case of the spin-1/2 all points inside the Poincare sphere are
taken into account). This means that the expression (6.8) for the density operator may
imizes the entropy under the given constraints on the measured mean values. Conse’
quently, the generalized Bayesian inference in the limit of large number of measurementg
is equal to the Jaynes method of reconstruction based of the MazEnt principle.
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