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The problem of measuring the London phase state distribution and the Susskind-
Glogower cosine and sine phase state distributions of a radiation-field mode in bal-
anced homodyning is studied. Appropriately smoothed phase state distributions
are introduced that tend to the exact ones as the smoothing parameters approach
zero. The integral relations of the smoothed phase state distributions to the phase-
parametrized field-strength distributions measurable in balanced homodyning are
studied. It is shown that for nonzero smoothing parameters the integral kernels
are well-behaved functions. The integral relations can therefore be applied to di-
rect sampling of the smoothed phase state distributions from the field-strength
distributions. This offers the possibility of asymptotic determination of the exact
phase state distributions from the difference-count statistics recorded in balanced
homodyning in a very direct way. Numerical simulations show that the method
yields the exact phase distributions with sufficient accuracy. .

1. Introduction

The quantum-mechanical description of amplitude and phase quantities and their mea-
surement has turned out to be troublesome and is still a matter of discussion (for a
review, see [1]). Since Dirac’s work in 1927 [2] a number of attempts have been made to
define phase operators. The main reason for the difficulties connected with a definition
of phase in quantum theory has been the lack of a unique self-adjoint phase operator.
So, various phase concepts have been developed that converge in the classical limit but
give quite different insight in the problem of quantum phase.

 In this context the question has been arisen of how the different phase quantities
muﬂoaﬁo& in quantum theory can be measured — a question which is of particular
nterest with regard to phase definitions that are closely related to phase operators. A
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powerful method of measurement of phase sensitive properties of radiation-field mogg
has been homodyne and heterodyne detection techniques. Moreover, these techniqy,
have offered qualitatively new possibilities of measuring the quantum state of the mog
{3,4].

In the following we study the problem of measuring the London phase state distrihg
tion and the Susskind-Glogower cosine and sine phase state distributions of a radiatiop!
field mode by direct sampling them from the recorded data in balanced :oSoavBEm
For this purpose we introduce appropriately smoothed phase state distributions, wheg
the smoothing parameters characterize the observational level at which the phase staf;
distributions are desired to be observed. The exact distributions are asym
observed in the limit when the smoothing parameters approach zero. To illustrate ¢
method, results of computer simulations are presented.
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2. Parametrized phase state distributions

Let us restrict attention to a single-mode radiation field prepared in a quantum stal
described by a density operator § and consider the exponential phase operator

oo
E=Y |n)n+1|
n=0
and the Hermitian cosine and sine operators
G= %T BY) and §= W.E _ B,
respectively, which satisfy the eigenvalue equations [5,6]
Blei*) = 4 |e'9),

G,._Sm&v = cos ¢ | cos @), w_mmu&. = sin ¢ | sin ¢).

The London phase states |e*?) as well as the Susskind-Glogower cosine and sine phase
states |cos¢) and |sin¢), respectively, resolve the unity. The states |e*?) are non
orthogonal and non-normalizable. Both the cosine states |cos¢) and the sine states
|sin¢) are orthonormal with respect to the Dirac & function. The states can be used t
define quantum phase distributions of the mode under consideration. w7
With regard to direct sampling of the distributions from the data recorded in b
anced homodyning, it is useful to start from proper Hilbert space states |, ¢) = |¢'¢,€)]
[cos¢,€), and |sin ¢, €) that are normalized to unity, ‘

_$~mv — C . almmv:u M al:mm..a.v_ﬁv. Amv
n=0 i !
d+€/2 d+e/2
H ’ / L “_. / & /
_OOm&.mvHI/N \. de’ | cos ¢}, _mE&,mVH.Qm. \ d¢’ |sing’). (6)

$—¢€/2 ¢—ef2
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states |, €) satisfying the eigenvalue equation E|¢, €) =e~¢e'? |, ¢)
The :oa-w.n_ﬁ_MMmoMﬂM_nm:a vr_mwm Wamﬁmm wmmm. e.g., [7]). After multiplication by the factor
ar m_mwmmvl\ 2 they tend to the non-normalizable London phase states [e'?) as € ap-
(- Mmm zero. Similarly, the states |cos¢) and |sin¢), respectively, are obtained from
proae tes €~ 1/?|cos ¢, €) and €~ 1/2|sin¢, €) in the limit when ¢ — 0.
ens the states in Eqs. (5) and (6), e-parametrized phase distributions can be
m_._._:.mﬁm_”ummﬁm via their overlaps with the quantum state of the radiation-field mode under

consideration,

ﬁ?ﬁmv = Zluﬁmv Aﬂ,m_ w_&,mvu A.Nv
pe($,€) = N7 (€) (cos ¢, €] 8| cos ¢, €), (8)
ps(¢,€) = Ny Y(e) (sing, €| 6]sin ¢, €), (9

where the normalization factors N (e), Nc(e), and ZME have been introduced in order
to normalize the distributions to unity. The distributions (7) — (9) are smoothed phase
distributions (cf. the Figure) which in the limit ¢ io.vmoon:m 25. bo.:&o.: phase state
distribution and the Susskind-Glogower cosine and sine phase &mg_u:roum. {8]. The
smoothing parameter € can be regarded as being a measure of the ovwm:wn_onm_. level
at which the exact distributions are desired to be obtained. To answer the question of
whether or not the phase distributions can directly be sampled from the data 309.&0&
in balanced homodyning, let us now consider their relations to the vwwwa-vm.nmaoeisoa
field-strength distributions p(F,¢) = (F, | 2|F, ¢), where |F, p) are the m-mm:rm».m of
single-mode field strengths F(p) = |F|(e"*¥a + e'*at) [a (a'), photon destruction (cre-
ation) operator]; for details see, e.g., [9].

3. Relation to the field-strength distributions

It is well known that in perfect homodyne detection the measured difference-count
statistics is an appropriately scaled field-strength distribution p(F, ¢) [10]. Knowing the
field-strength distributions for all values of ¢ within a 7 interval, the density operator
é is also known, namely [4,11]

o= [ do [aFn(F 0 RF ), (10)
0
where the operator integral kernel K (F, ) is given by
; Ll \ iy |F(p)—F| }. 11
K(F,p) = = [ dyly| sﬁ?i.@ ﬁ (11)
From Eqgs. (10) and (7) - (9) we find that
P, =N [ do [ aFp(F ) Kb 0) (12)
0 -0
and . -
pe (@) = Ngy(©) [ do [ dFp(F ) K26, 7. ). (13)
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Using Eqgs. (5) and (6) and representing the cosine and sine phase states |cos ) 4. Computer simulation of measurements
| sin ¢), respectively, in the photon-number basis (see, e.g., [5]), the integral kernels ¢

be written as

K($,F,9) = (6l K(F,0)18,€)
= AH — mlumv MU N:EA.N.._ ﬁv m::l:—vﬁaln?lrav.

n,m

To demonstrate the feasibility of direct sampling of the phase distributions (at chosen
observation level) from the difference-count statistics recorded in perfect homodyne
detection, We have performed computer simulations for a signal-field mode prepared in
.u,mncmos& vacuuimn state with a mean number of photons (2)=1. In particular, we have
assumed that 10% x 30 events are recorded. From the results in the Figure 1. we see that
the sampled distributions are in good agreement with the theoretical predictions. Their
deviations from the exact distributions obviously result from the middle observational
Jevel chosen. Nevertheless, the accuracy is seen to be sufficient in order to detect the
S.vmn& features of the exact distributions.

(cos @, €| NNA.W. ©) | cosé, €)

8 Knm(F,9) .
e = A (n+D)(m+1) sin[(n+1)¢] sin[(m+1)4]

Ke(¢, 7, 9)

x sin[(n+1)e/2) mmb:3+5m\w;. ” A

K3(6,F,¢p) = (sing,e] K(F,¢)|sing,¢)

b Kanom A..\.u. ﬁv
me e A (2n “ 1)(2m +1) cos[(2n+1)¢] cos[(2m+1)¢]

x sin[(2n+41)e/2] sin{(2m-+1)e/2]

Kant12m41(F, ©) mwﬁw?+:& sin[2(m+1)¢] sin[(n+41)¢] m§:§+:m$. (

4(n+1)(m+1)

+

Here,

Knm(F, ) = (n] K(F, ) |m) (17)

is the sampling function for determining the density matrix in the vwogm-:cavﬂ.dmw,ﬁ.
which has been studied in detail in a number of papers; see, e.g., [12,13]. It can be given
by Lk

NA:EQHM ﬁv = a..?livs.?iﬁev,

where fnm(2) may be expressed in terms of parabolic cylinder functions, z being »_ro.
dimensionless variable F/(+/2|F|). It should be noted that in the case of non-perfect
detection smeared field-strength distributions are measured that are convolutions of amo
true distributions p(F, p) with a Gaussian noise distribution; see, e.g., [9]. Substitutin:
in Egs. (12) and (13) for p(F,¢) the smeared distributions, in Egs. (14) - (16) th
functions K,m(F,¢) must be modified accordingly; see, e.g., [12,13]. .
From inspection of Egs. (14) — (16) we find that for any ¢>0 the functions K¢, F.®
and K¢ E?F F, ) are well-behaved (bounded) functions. Hence, Egs. (12) and (13) cant
be regarded as basic equations for direct sampling of p(¢, €), pc(@, ), and ps(4, ¢) from
p(F,p) for any € > 0. Since the sampling functions do not exist for e =0 (there is 10}
convergence in the Fock basis expansions in this case), the exact London phase stat
distribution and the exact Susskind-Glogower cosine and sine phase state &mﬁlvcﬁo,%w

can only be obtained asymptotically. The smaller the value of ¢ is, the higher the leve
of accuracy becomes at which the exact distributions can be obtained.

Fig. 1. The London phase state distribu-
tion (a) and the Susskind-Glogower cosine
(b) and sine (c) phase state distributions
are shown for a squeezed vacuum state with
mean photon number (f) = 1. The exact
distributions (solid lines) are compared with
the smoothed distributions (dashed lines) for
e=0.1, (a), and € =04, (b) and (c). In
the computer simulation of measurements
(dashed-dotted lines) 10% x 30 events (30
phase values) are assumed to be recorded.
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5. Conclusions

Introducing appropriately smoothed phase distributions, we have shown that both
London phase state distribution and the Susskind~Glogower cosine and sine phase st;
distributions of a single-mode radiation field can directly be sampled from the wmoo,& ;
difference-count statistics in balanced homodyning with sufficiently well accuracy. ,T)
accuracy is determined by the interval of field strengths used for “probing” the phas
statistics of the state under consideration. With decreasing smoothing parameter thi
interval is increased and hence, the accuracy is increased as well. Since for vanishing
smoothing parameter the sampling functions do not exist, the exact phase distributiong
can only be obtained asymptotically. ;

In the paper we have calculated the sampling functions using expansions in the
photon-number basis. Since with decreasing value of the smoothing parameter the val.
ues of the photon numbers which must be taken into account increase, highly oscillating
functions are involved in the expansions and much numerical effort must be made to cal-
culate the sampling functions. This difficulty might be overcome by using consequently
a field-strength basis [14] and avoiding the detour via the photon-number basis, as has
recently been demonstrated for direct sampling of the density matrix in a field-strength
basis [15]. N

We finally note that the results reveal that the above considered quantum phase
distributions cannot be obtained, in general, from the field-strength distributions in the
sense of an operational phase distribution introduced in [16].
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