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We define a joint Wigner function to give a fully phase space description for the
interacting system of the quantized electromagnetic field and two-level atoms. We
give the equation of motion in a special case and present a simple solution.

1. Introduction

An atom interacting nearly resonantly with a single mode electromagnetic field can
be approximated with good accuracy as a two-level system, that is as a w-mvwc particle.
A fully quantum-theoretical description of this system is the J aynes—Cummings model
[1]. If one has a collection of N identical two-level atoms, then the behaviour of the
atoms is similar to the dynamics of an agular momentum characterised by the quantum
number j = N/2 [2, 3]. This model is the prototype of superradiance {2]. The state
space of these kind of interacting atom—field systems is the direct product of the (25+1)-
dimensional angular momentumstate space with the infinite-dimensional oscillator state
space.

It is customary to apply phase space methods to the oscillator field mode {4, 5], while
the same technique is much less exploited for the atomic system. The first quasiprob-
ability distribution for the spin variable over a sphere as an appropriate phase space
is due to Stratonovich [6]. The idea that the coherent quantum states of an ensemble
of two-level atoms can be associated with points on a surface of a sphere has been
first discussed by Arecchi & al. [3]. The usage of atomic phase space distributions in
Quantum optics has been demonstrated more recently in [7, 8].

Now it seems straightforward to describe the interaction of the atomic system and
ﬁ.rm field by a new quasi-probability distribution function over the corresponding (clas-
sical) phase space, that is over the direct product of a spherical surface with a plane.
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We introduce here the Joint Wigner function of the interacting atom-field system %
give a fully phase space description for these typical problems of quantum optics. O
definition is based on unifying the well known Wigner functions [9, 10] for the fial}
oscillator [4, 5] and for the angular momentum [6, 7). We give the equation of motjg,
for the joint Wigner function in a special case and give its solution assuming a simp

initial condition.

2. Comparison of the Wigner functions for field and for angular momenty;

To see the analogy between the definitions of the Winger functions for oscillator an
for angular momentum we briefly summarize both of them below.

It is customary to define the Wigner function of a field mode in terms of the (sym
metrically ordered) characteristic function:

X(8,8") = Te(pD(8, 8°)),

where p is the density operator of the field and D(g,p*) = efa'~pa
displacement operator.

The Wigner fuction is simply the Fourier-transform of the characteristic function
1 0l —a®
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where we combined (2) with (1) to obtain (3). We note that the Fourier transform of;
D(s, B*) appearing in (3) is just the operator of the parity with respect of the pl
space point a, and it follows that the Wigner function is the classical counterpart
this displaced parity operator {12].

In order to get a similar construction in the case of an angular momentum of
tum number j one introduces the phase space for this system
radius h\/j(5 + 1). The natural complete orthonormal function basis on this sphe
the set of the spherical harmonics Yk q(9, 4), while the corresponding operator basis i
constituted by the (25 + 1)? irreducible multipole tensor operators Tiq [13]. The latte
satisfy by definition the following commutation relations -

[V, Tkq] = fiQTkq,
ﬁ.NH,”NWAO”_ m/\NﬂANﬂj_u Hv - QAQH HVHNJ.\ﬁO%T 5

where J,, Jy, J_ are the usual components of the total angular momentum for the
corresponding system. The K indices are nonegative integers and Q = —K ,—K
1,...,K. This operator basis is complete in the sense that any operator acting 1

W(a,a*) =

I

il

operators. Further, the Tk q-s are orthonormal with respect to the Hilbert-Schmi
norm:

‘HM,AMJMAO M;\A\Q\V = %NA\A&.OOT

- ] i 45
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lar momentum Wigner function is defined then for the density operator p

ahe wbmm Mwm quantities pxg = Tr(p ﬂm«ov which are the counterparts of the nwwgo.

in SH.Bmm o:naon (1). The Wigner function itself is the discrete Fourier-type transform
teristic 1 "

of the px-s 6, 71:

T 25 K
W(0,6)=/2ZE2Y" 37 praialt.6). ™

K=0Q=—K

3. Definition of the joint Wigner function

Now we introduce the joint Wigner function for interacting atom-field m%mamaw. MWM
. ility distributi ion is defined over the corresponding clas:
i-probability distribution function is defin . :
=M«< nmwwnmnoéiow _%m the direct product of a spherical surface characterized by the
phase 3 .
i 6,4) and the (a,a*)-plane. . . .
80%_:~MﬁMM—mmwﬁconioa émnw quasi-probability density functions, we introduce first
m - . o
the joint characteristic function in the following way:

Cxa(B.8",8) =Tx (pt) D(B, ') Thq) (8)

where p(t) is the density operator of the interacting m«mﬁma. UAWN m._v is erwmwwmmvwﬁwﬁm”

operator acting in the field’s state space, and Tk g is the multipole ope o g in

the angular momentum state space. The a.ozmg. product o_,uowmaomm .U.mm, QSW Nmamem:‘_v

the basis (in the space of operators acting in mr.a mﬁmnw space of % e interacting sy:

which is appropriate for the definition Om.nvm uo:.; Wigner func ion. ¢ Wisner function
With the help of the joint characteristic function we define the joint Wig

as

i 2 K . .
/ 1 * e -8 (9
W(a,a*,0,¢,t) = Wmml M m SRQQ.&\%Q Ckq(B,B",)e ©)

K=0 Q=-K

We note that by a definition similar to (9) we can map any ovmnﬂom M_ Snmmﬂm_wmmm
an observable onto a phase space function .\AA.P a*, 8, ¢,t), which enables Hﬂ ca culation
of quantum expectation values by mmaomn.wso.cm o<on.§o phase m%&@nm.ﬁ ma y
arrives at the Wigner representation of these interacting atom-field systems.

4. Equation of motion

Now we give the equation of motion for the joint <§m~.~o~ ?snﬂoz« Pmm.:_,:_mm mﬁ
Special case of j = 1, i.c. one two-level atom. We describe the interaction by the
- N¢ . . -
aw%:omlO:EEmzmm model, that is by the Hamilton operator

Hjc = hws(a'a+ 3) + hwaos + hg(acy +alo). (10)
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By using the dynamical equation for p we find the following equation of motjo;
the joint Wigner function: - .

N

%&S\ = IEM%MS\IEQ%S\
+2g]a] sin(¢ — émlws\ % Byl ocotBious(d — é%s\
& (s sism ) 2w
I s (-0 -sine -0 2) 2L
+N maaéigén&% %mmw. W,

where we have introduced the notation o = lale=¥. This form explicitly shows
importance of the relative phases of the atom and the field.

The first and second terms in the right hand side of the equation of motion describe
the time evolution of the Wigner function in the absence of interaction, that is thé
dynamics of the free field and the free atom. In this case the solution of (11) does
not need any additional effort compared to the equation of motion for the field’s usu
Wigner function. .

However, it is a more difficult task to solve (11) in the case of interaction. If initially
the atom is in its upper state and the field is in the n-th number state, then the solution.

of (11) is the following: ﬁ
Wila,e*,0,4,t) = W%m-u_n_uri,\msmeﬁs_ﬁea_gs
4y = sin 0 LO@laP?) Re [# (45, () dF (1) o]
(V3058 — 1){d; (L), (4lal) (12

Here L{® (z) denotes the Laguerre polynomial [14] and

df(t) = cos(Rut)+ Memm‘.ea sin(Rat),
7, (1) = L?m:iaim::.

where R, = \/(w; —w,)?/4 + g*(n+1) is the quantum Rabi frequency of the transi-
tion.
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Fig. 1. Plots of the reduced Joint Wigner function obtained from (12) as described in the

text
different instants. At t = 0 the atom is excited and the field is in the n =
while at ¢ = 7/4 the field is in the n = 4 number state and the atom is in its
Intermediate times the system is in an entangled state.

» assuming n = 3, wy = w, and g = 1 (which correspond to a Rabi period 7/2), at four
3 number state,
ground state. At

If we integrate the joint Wigner function (9) over the field variables, we obtain the
Usual Wigner function for the angular momentum, while integration over the spherical

Coordinates yields the usual Wigner function of the field.

It is more interesting however, to integrate simultaneously over one field and one
atomic variable, since the resulting reduced joint Wigner function still contains infor-
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mation about possible correlations. For example integration over the field’s phase ¥
and the atomic azimuthal angle ¢ yields a reduced Joint Wigner function W(lal, 6,1),
which characterises simultaneously the field’s intensity and the atomic inversion. With
the help of this reduced Joint Wigner function one can still calculate the exact eXpec-
tation values of certain observables whose Wigner representation depends only on the
remaining variables. ,

Fig. 1. shows gn% (lo|,8,t) obtained from (12) for n = 3, assuming exact resonance
and g = 1, at four different instants. :
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