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A micromaser driven by a beam of entangled pairs of atoms is studied. Two
schemes are considered where the atom pairs are prepared in coincidence states,
la’ya"y + e”|b',b"), or in anticoincidence states, la’, 6"y + €'*]b’,a"). In the ab-
sence of losses, we solve the former scheme analytically for the steady state of
the micromaser field. At the presence of losses, the master equation for the latter
scheme is derived and solved for the steady-state photon statistics. We argue why
analytical solutions are not found in the alternative schemes.

1. Introduction

The so-called micromaser or one-atom maser [1] has become a landmark in quantum
optics for its success in studying the quantum nature of the interaction of matter and
light. In this system, a sparse beam of two-level atoms traverses a high-() microwave
cavity in such a way that there is at most one atom in the cavity at a time interacting
resonantly with a single mode of the electromagnetic field. Due to the high-Q value it is a
reasonable theoretical assumption to separate the single-atom + single-mode interaction
given by the Jaynes-Cummings model (2] from the damping of the field due to cavity
losses. In this case the problem becomes simple enough to be theoretically tractable
(3]. As experimental techniques improved drastically due to a combined application of
Rydberg-state spectroscopy and superconducting microwave cavities, experimentalists
Managed to realize extremely high-Q (3 x 10'°) micromaser systems in the laboratory
[4]. In this way, experimental checks of the predictions of an exactly solvable theoretical
model have become available — not a very frequent constellation in physics. It turned
out that this rather simple system is rich of interesting physics and can be used to
demonstrate various quantum phenomena. Prominent examples are the collapse/revival
- of Rabi oscillations [6], or generation of nonclassical states of fields [1,3~7] including
quantum superpositions of separated micromaser fields {8]. Such entanglement between
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mechanics in the so-called “quantum eraser” setup [9]. :
In the present Paper we also address the problem of entanglement. We want to knos
what the implications of prepared entanglement in the
the behavior of the micromaser field. In particular, two are considered wheg
every consecutive pair of atoms is prepared in coincidence states, |, a"y + ey, b1y
or in anticoincidence states, a’,8") + e*[b’, a"). 1t is assumed throughout the pape
that there is at most one atom in the cavity at a time., However, since the atomg aré
in correlated states the atom-field interactions are not independent from atom
This is where the departure from ordinary micromaser operation originates from.
The paper is organized as follows. In the next section we present an analytica]
solution for the pure steady state of the field in the coincidence atomic state schem:

the steady-state photon statistics in the presence of losses. It is argued why analytica
solution is not found in the alternative scheme. We note, however,

numerical simulations for this scheme were presented at the workshop. Finally, Sect.
is devoted to conclusions.

2. Steady-state behavior in the absence of losses

Let us consider a microwave field in a cavity of no losses pumped by a beam of
two-level atoms where every consecutive pair is in the coincidence entangled state. Th
Initial state of an atom pair + field system reads as

) = (', a") + 418, 7).

Here, the primes and double-primes respectively denote the first and second atomofy
the pair entering the cavity, and the field is given by

) =) " Wa[n).
n
After the two atoms have interacted with the field the final state reads as
1 .
V) MU U, Athth_a\. a",n) — 1S pald, b n + 1)
n

I.s..m‘“_+~q~w\+&_a\_ nt, n+ Hv - .m‘h+~rm‘“.\+m_@\. @:v n+ Mv

+m&QN.QN.\_@n b, n) — N.m&Q“. SPlb,a" n ~ 1)

—ie** S CY_ |d’, b n—~1) - ¢'tg! motlaa’,n—2)),

where C/, = cos(g'r’\/n) and S/, = sin(g't'\/n) correspond to the first atom with atom:
field coupling constant 9" and interaction time 7', and similarly Cy/ and S! stand for
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nd atom of the pair. It is apparent from the above equation ﬁ.rm.n ﬁrm. Fock space
Lhe e 1d is separated by the so-called trapping states into dynamically disconnected.
olte mMrm lower boundary of a block is given by the “downward” trapping state, {Na),
hjocss by Sn, = 0, and the upper boundary by the “upward” trapping state, |N,),
deinec V%.m. o 1= m This means, that a field state initially bounded within one block
%mammn _% ,m.m_ﬁma:mm: in the same block for any time, i.e., ¥,, # 0 for Ny < n M Ny,
Wﬂwwmom%ranimm. This is the necessary condition for the existence of a normalizable
" in the absence of dissipation.
%om_h,_wuw MMM&MMMWMMMMM«MW the field if, after the interaction, the atom pair + field system

factorizes again as
¢ 19) ® (Cat,arla’, @) + cor por b, ") + car porla’, B) + cpr qu |V, a”)), )

2 .
where ¢; ; and 6 are independent of n and 22ileinjn|” = 1. Comparing Eqgs.(3) and
(4) we arrive at the following system

e caran ¥, = w (¥aCrt1Cry1 — €Wn12801,50,,) ()
ey pu¥, = w (—¥n_25,_,5n + m&é:Qthv ’ ()
ecapnly, = w (¥n-1C, Sy + €90,11 5, CL) (7)
ey qul, = ujl\cw (o180 Criy + €W, 11 CL L S, (8)

Substituting n = Ny and n = N, into Egs. (7) and (8), nammge?&% we find the
solutions for the coincidence atomic amplitudes at steady-state given by
~if e—if
Cq! gt = ¢ and Cp! b1t = I.In:v. Amv

V2 V2

As a consequence of this, the anticoincidence amplitudes are zero,

nnﬁv: = Oq.n: = O AHOV

. —if
It can be seen that, apart from a physically irrelevant overall phase factor of e=* , the
atom pair is bound to exit the cavity in the same coincidence entangled state as the

* itia] ope at steady state (compare Eqs.(1) and 4)).

The corresponding steady state of the field is determined by the following recursion
moduz_@u

Snt1 (Sny2¥nia + ml..\.m.:te:v =0. (11)
>E§S::.< since every second photon numbers are coupled only this recursion provides

W0 possible amplitude sequences. However, examining the formula ownw?_.q the first
factor Sn+1 proves to be important to avoid contradiction. We find that in the case
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when the trapping states, [Na) and |N,), bounding the field in the Fock space are ¢
the same parity the only normalizable solution is given by ¢ 5 8]

. n /s _
YN0 = ¥y, Atnu.ev: E A Ny+2k _v )
k=1

SNy+2k

The amplitudes range as Un,, YN 42, A
case when N; and N, are of opposite parity we obtain

n
i\ T SNyta2k
UNatantr = Ungr (—e7)" ] Am X v
k=1 Na+2k+1

-y ¥n,-2, ¥n,, and zero otherwise. In ¢

ranging as Yy, 41, Uy, s, ..., UN, -2, ¥n,, and zero otherwise. This means that the
pure steady states of the field are parity states including either even, or odd vvoﬁ"ow
numbers only. They are bounded by trapping states in a disconnected block in,the
Fock space {overlap of several blocks is not considered here). The parity of the states i
determined by the relative parity of the bounding trapping states. The case of Eq. Qwv
with even-even trapping states may be the most important for its including vacuum,
Ng =0, that is always an even parity trapping state.

Clearly, the existence of pure steady state in the present scheme is a consequence of
quantum interference. Any possible state, [a',ay, ¥, 8", |a’,4"), and [6',a"), in the
final state vector can be reached via two alternative paths. In the case of |a’, a"), for
example, the two paths are |a’, ") — |a’, a") — [a’,a”) and [V, 4") — |a’,b") — |a, a’);
The two paths change the photon number of the field in different ways that opens up
the possibility to find a solution for field amplitudes separating the field state from the’
atomic state. We want to note, that this mechanism is similar to the one in the case of
tangent/cotangent states of the micromaser field [6]. Actually, the difference betwee
the two systems resides in the existence of atomic entanglement only. Therefore,
comparison of the two is a good way to see the effect of entanglement. .

Without going into details we note here that after carrying out similar calculations
for the anticoincidence scheme we found no solutions for the derived equations, i. e., the
system has no steady state. There are interfering paths in this scheme too. Howe
they do not change the photon number of the field in different ways as it happene ]
the coincidence scheme but both alternatives correspond to the same photon number
For example, evolving into the final atomic state la’, a”) results in a decrease of the
photon number by one any path you take. Similarly, |a’ ,0") and |/, a"), are reached
with unchanged photon number, while |§’, b} corresponds to an increase of one for. an,
paths and any initial atomic state. It follows, that there cannot be such field amplitudes,
that would separate the field degrees of freedom from those of the atomic.

3. Steady-state behavior in the presence of losses
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¢ during the interaction of a pair with the field. In this way we can make maximize
y effect of atomic entanglement on the field. .
:.mm,:.ma we find the master equation of the system for the density operator of the field,
)

. It reads as
¢ p=1® (MO ~1) 4 £p, (14)
irmno (2 is the average injection rate for the atom pairs, Lp is the usual term account-
ing for the cavity losses and thermal radiation, and

Eﬁwvb - N;uono‘ AQEQ\an. ® Eq;ﬂ\l;v . A”_,mv

Here, U’ and U” denote the Jaynes-Cummings time-evolution operators mOw the mwsm_m.
atom + single-mode field interaction for the first and second atom, respectively, par, is
the two-atom density matrix, and T'r,. indicates that the trace is taken over the atomic
mmm_.mam of freedom. . N . .

In the number representation the master equation exhibits a simple form of diagonal
coupling and takes on the detailed balance equation given by

pnn =Jan = Tn-1n-1, (16)
where
Jan = % Tat.:i S 1Cipae®? + Q,nt.w“.\ta'&\u_m
| —Pn,n “.+HQ“.\+Hm_.s\m + Qa\,.wutml&\w_ug
+Ye (n 4+ 1) [pat1ne1 (fie + 1) — pn nite) a7)

At steady state J,,, = 0. Solving this equation for Pn,n We arrive at the steady-state
photon statistics of the field reading as

b < 2 -
n 2 SO 4 O Ste= 2 4 y gk

= " : 2 2
oo =m0 L |01 Gy Cppysie o 2o 08

o (18)

where 7, is the cavity decay rate and 7, is the average number of nr.aﬂbm_ Uwo_wam
Present in the cavity. Due to limitations of space we cannot illustrate this formula with
specific examples here (some of them were discussed at the workshop). As a summary
We can say that these photon statistics exhibit a similar “phase-like” structure as Q._mi. of
the ordinary micromaser. However, the photon numbers are in general characteristically
smaller, new kinds of trapping states show up, and the system is very sensitive to the
relative phase in the atomic entanglement.

Without going into details (detailed results were presented at the workshop) we
Want to mention here that analytical results for the coincident scheme were not found.
The reason is that the coupling is not simple diagonal in this case but includes the
first and second off-diagonals too. This makes the analytical treatment rather difficult.
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However, we carried out numerical simulations of this system. It was found that t,
density matrix of the field includes large coherence terms at steady-state. Similar]
to the diagonal terms where the probabilities of even photon numbers are enhanced
against the odd ones resulting in oscillatory photon statistics, nonzero co
are significant in the even-numbered off-diagonals. These results are remi
characteristics of the parity states found analytically in the previous section and show
the effect of cavity losses and finite thermal radiation on the system.

4. Conclusions

We conclude that according to our calculations entanglement in the pumping atomic
beam modifies the micromaser field drastically. The experimental verification of ﬁr&w
predictions, however, appears to be a formidable challenge due to the difficulties n
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