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In this paper we show examples where dynamical processes in semiconductor het-
erostructures are integrated. Systems and devices are chosen where two degrees
of freedom are involved.

1. Introduction

The operation of many recent semiconductor devices is derived from the technical
ability to design space structures of desired form [1]. Such mesoscopic heterostruc-
tures provide simple realizations of many model systems treated in quantum mechanics
textbooks. Thus they also offer researchers the opportunity to investigate fundamental
processes displayed by the charge carriers in the material. These can be manipulated
by doping, thermal excitation or external carrier injection. The present situation thus
offers a wide range of phenomena which are of interest from a fundamental point of
view but which are also relevant for the technical development of the field.
The technical devices operate over ever shorter time scales and smaller space dis-
tances. They are thus genuinely time dependent and steady state properties do not
provide all the information needed to understand the phenomena involved. The pas-
sage of electronic wave packets through the structures gives an excellent opportunity
to determine the space and time scales characteristic of the various stages of a compli-
cated time evolution. Experimentally it is still not possible to launch and follow single
electron wave packets coherently, but the theoretical calculations allow this. They have
thus turned out to provide a transparent tool for the research into dynamic phenomena
in semiconductor heterostructures [2].

The numerical integration of the time dependent Schrodinger equation is, however,
far from trivial even with modern computers. In particular, the numerical effort grows
rapidly with the number of degrees of freedom; thus one can reasonably easily carry our
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calculations in one dimension, but the addition of further degrees of freedom rapidjy
exhausts the computer resources. This we first encountered in adding spontanehi
decay to the molecular wave packet dynamics [3]. In this paper we give an overvie
over some simple semiconductor situations where the investigations have required {h
integration of two-dimensional time evolution.

In Sec.2 we review the physics of single electron quantum dynamics in a semicondy,
tor. In spite of the simplicity of the formulation, the full complexity of a solid structyg
lies below. Thus the wave functions that obey a Schrédinger-like wave equation are ep
velope approximations based on the fundamental Bloch states of the structures. Thyg!
it is only a crude first approximation, but we cannot here go into the considerations
required to justify it.

In Sec.3 we present the theory of a simple two-electron device where the motio
of one charge is gated by the arrival of the other one. In Sec.4, a one-dimension3

This provides the basis for a coherent micro-cavity laser, and the single lasing mod,
gives the second degree of freedom. Finally in Sec.5 we integrate the motion of a single’
electron through a genuinely two-dimensional structure. In this situation we can imitat
the diffraction processes encountered in ordinary optics; hence we call this conductios
electron optics. The examples presented are only offered as illustrations; for the detail
of the systems and the numerics, the readers are referred to the original publications!
Finally the results are summarized and some omissions and simplifications are pt :
sented in Sec.6. In this paper we cannot, however, go into any details concerning th
possible extensions of the discussion.

2. Time dependent envelope approach

In bulk solids, a single electron basis is given by the Bloch states

ik-r

bsxc(r) = €T u, i (1),

where s denotes the band index, k is the lattice momentum, and u, x(r) has the sym;:
metry of the lattice. The energy in the band s is given by a function ¢, (k). In & puze
semiconductor crystal, the bands are either filled (valence bands) or empty (conduction
bands) at zero temperature. At finite temperatures, the size of the band gap determines
the amount of thermally excited conduction electrons, which leave behind them holes
carrying positive charges. o

In a semiconductor heterostructure, layers of different materials are sandwiched
in consecutive layers, so that large sheets of pure material are separated by wmgzo_
interfaces. This creates a structure which is homogeneous in two directions (z and 'y
say) but changes abruptly from one material to another in the third (z) direction. The
material parameters change over a few atomic layers only. A simple example is shown.:
in Fig.1, where a material IJ is sandwiched between bulk samples of another Em;mawm
1. The lower part of the figure shows how the conduction and valence bands acquire
spatial variation in their energy.
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Fig. 1. The semiconductor heterostructures consist of layered materials (I and II) with different
band gaps.

In a structure of the type discussed above, the electrons see bulk properties in the
transverse (z and y) directions and hence the states can be amwm.u to be of the form
(1). In the z—direction, the state takes a different shape. In the time dependent case,
we assume that we can separate the dynamics in the z—direction from the transverse
degrees of freedom. Thus we write

G?.M.& = MUSLN,S exp [i(kzz + kyy)] us x(x). ‘ (2)

The function ¢,(z,t) is the envelope wave function. Its time evolution is nmwm.:. to
derive from the bulk energy &, (k), when the k,—dependence is expressed in the voﬂr.o:
representation. In the bulk case (1), the relation between x and k is like a Fourier
transform, and hence we can approximately replace k, by —i % as in ordinary O:maﬁ:u
Theory. This function is, however, different in each band and each material [4]. medm
the properties of the Bloch states, we obtain the approximate time evolution equation

for the envelope function

ihZes(z,t) = e(—id)ps(2,1)

(3)

I

Tﬁs -y + _ 0s(2,1).

The index y signifies the material (y = I or IT). The latter form introduces .nrm band
effective mass m{ which makes the equation look like a Schrédinger equation. .Hr.m
Potential function €¥(0) gives a constant value for each material indicated by y. F this
Way, we obtain a quantum problem in a layered structure. We are going to discuss
the dynamics of semiconductor electrons in this approximation; the theory for holes is
€xactly similar. The various electron bands indicated by the index s are assumed to be
Coupled by external optical field exactly as in the bulk situation.
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The theory suggested by the argument above is a first approximation on)
validity should be estimated and the corrections should be evaluated. In this Paper
do, however, not address these difficult questions. We are satisfied to accept (3) as
starting point and evaluate its consequences. :

3. A two-electron device

cles also manifests itself in the symmetry or antisymmetry of the wave function -

simplest system where we can investigate such phenomena consists of two electro,
We choose to carry out such an investigation on a device where the motion of th

electron is gated by the presence of the other one [5]. Their interaction takes place ig
heterostructure shown in Fig.2, where the barrier height is taken to be Vo =0.115eV4
The sequence of potential barriers is chosen such that near the energy E = 0.754 Vy ¢
particles are transmitted and near E = 1.20 Vo they are reflected; this is shown in't
lower part of Fig.2.

transmission probability
=
=

0.0 0.5 10 1.5 20
EIV,

Fig. 2. The upper part of the figure {left) shows a schematic picture of the structure used
the two-electron gate. The right side gives the potential barriers: they have d = 33 A and th
wells are w; = ws = 33 A and wy = 55A. This leads to the transmission profile in the lower
part. The shaded and the dashed profiles are the energy ranges of the incoming wave packets.

The device is operated in such a manner that electron 1 is launched from the right
with its energy in the pass region (shaded energy distribution in F ig.2) and electron 2.i§
launched from the left with energy in the reflection region (dashed energy distributid
in Fig.2). If the electrons were independent particles, they would both emerge to the
left. However, when electron 2 enters the barrier region, it will occupy the potential
wells for a while, and the electron 1 will be reflected by the repulsive interaction. In
the ideal case it will emerge out in the right direction. The current emerging to th
right is thus gated by the arrival time of electron 2. In the quantum case it makes no:

gense 1
one electron

one dimenston
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tate which electron goes which way; in fact we can even get out more than
0 S

to the right. . .

trons are Fermions, but we can also use our model system to _=<om9mmmm the
. Fled _.Om quantum statistics. The two-electron system time evolution occurs in the
influence (z) which is transverse to the barriers. We can satisfy the mbamwﬂaoﬁa%
of the electron states by the function along the barriers. This emerges if we write the

53?&53&0:& state in the form

¥(ry,ra,t) = B(21, 22, ) (Y1, y2, 21, 22). (4)

: >_ | time dependence is ascribed to the motion in the z—direction. This ansatz is inserted

in the two-electron Schrédinger equation for the envelope function, mb&.ém integrate
“2. the z— and y—coordinates. Thus we end up with the effective equation

2 2 a9 -
..v.%meﬁurnfs = MU Al.wwm%mm + Siu&V (21, 22,8) + V(| 21 — 22 [) @(21, 22, 1),
(5)

i=1

where V(| z1 — 2z2 |) is the Coulomb mimamoaoc.%mnmmm@ over arw P:nﬁo:

9(y1, ¥2, 1, £2). By choosing this to be symmetric or antisymmetric in the two electrons,
we can use an antisymmetric or symmetric initial state for the function ®(z, z2,1); we
refer to these as the Fermion or Boson case respectively.

. When the particles are considered classical, the operation of the gate n.mb.vm de-
scribed as in Fig.3, upper part. In the z; — z3 plane the barrier structure is situated
at z; = z9 = 0 and the particle interaction is at z; = z9. The electrons are 5::.&,5&
from {zy, 22} = {400, —00}. In the case labelled (+), the &m.oﬁos 2 nm.mnrmm the barriers
first, it is reflected and the electron 1 passes the barrier without being affected; both
electrons emerge in the direction {—o00, —00}. Likewise in the case labelled (-), when
the electrons meet to the left of the barriers. In the case (0), however, the two &ooﬁoa._m
occupy the barrier structure simultaneously and their repulsion deflects the electrons in
the direction {+00, —0c}. Thus the arrival time of the electron 2 gates the fate of the
electron 1. .

The lower part of Fig.3 shows the result of wave packet m:gmgsmﬁm of Eq.(5).
Here we have not yet introduced the symmetry of the wave packet; this oo:mmvonﬂm
to classical electron statistics. As can be seen, the centres of gravity of the electronic
Wave packets behave very much like the ideal trajectories drawn in .25. upper vm.;
of the figure. Thus the gate is expected to operate as designed. This is verified in
the part (a) of Fig.4. When the two wave packets are launched so nrmm they reach the
barrier structure simultaneously, nearly one electron is reflected to the right. If they are
launched so that they are separated by about twice their width (=400 A) the amount
Scattered falls to about 0.2 electrons. This is the gating operation we are looking moﬁ, In
Part (a) we have chosen the relative dielectric constant € of the medium equal to unity.
Then the Coulomb interaction is strong, and dominates the behaviour; no effect of the
Statistics can be seen. We can soften the electron-electron interaction by introducing a
larger dielectric constant. Part (b) increases this to € = 2.2, which is enough to bring
out the effect of the symmetry. The gating action is less for the Fermions, because they
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back to the right. The lower part shows the centre of mass motion of a wave packet érmnn. the
particles have kept their identities (classical case). ;-
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Fig. 4. The backscattering probability as a function of delay between the wave packets. dn:
part (a), € = 1 and the symmetry does not affect the result. In (b) the interaction is mad
weaker by setting ¢ = 2.2 and the statistics can be discerned.

tend to avoid coming close, and thus the Coulomb repulsion is less efficient in turn
around the one electron.
We have seen that the two-electron gate works as we designed it. The Coulom:

interaction can be used to steer the course of the electrons when the resonant mnn:naﬁ.nm
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4. Micro model of a cascade laser

The semiconductor electron laser mmmmm,mom by Capasso 6] still operates in a nmm::o
where many electrons contribute incoherently to the amplification of the laser light.
In this Section we report on a micro-laser version of the quantum cascade laser. .m,o.T
lowing the micro-maser and micro-laser work, we ._oow at a structure 2.79.@ nr.m gain is
contributed by a coherent interaction between a single electron and a single micro cav-
ity mode {7]. By letting the electron tunnel through a Twﬁmnoﬁncngwﬁ we can utilize
photon assisted tunnelling processes to transfer electronic band energy :;o. E.Hono:m.
Because the electron propagates coherently, we can utilize the wmmonmnomm.ybmam the
structure to tune the emission, and the whole process can be made fast. H.ﬁ is mo_:a. to
occur over time scales of the order of less than 1 ps. Because the electronic relaxation
processes have been found to take about 4 ps, the emission process can be considered
as the traversal of a wave packet through the structure.
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Fig. 5. In part (a) the potential structure used in the cascade laser; on the right is shown how
it is situated in a laser cavity.

The heterostructure chosen is shown in Fig.5. The doping of the material is combined
with a suitable bias to achieve the barrier structure shown to the left. To the right is
shown a schematic picture of the semiconductor material inside an optical cavity. We
assume that this can be operated in a single optical mode. The whole volume of the
cavity is about 0.5 um?, which implies a micro cavity.

The system is described by the following Hamiltonians: The electrons propagate in
the z—direction through the layered barrier structure according to the Hamiltonian

m&”lllx—.a\ﬁ&v, Amv

and the field mode is described by

B2 1
5+.~.v = e o :E\EMQN. (M

Hyierq = hw Aa 3

Where we have used the field coordinate @ as defined via the use of a fictitious field

Mass M; according to

h
Q=\/oap5 (at+d). (8)
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Using the second form of (7), we integrate the mode degrees of freedom as if they we
mechanical variables. This gives directly the wave function of the photon state in th
cavity. st

The interaction between the electron and the cavity mode is taken in the minimyy
coupling formulation to be 5

Vi = —SA pt+ & A7 = QL+ Lnazg?
e T S gz 2" ’

where the coupling constant is given by
A% = .@ ||%.|
m \ meV

coordinate Q. The coupled equations (6)-(9) define a standard Schrédinger problem
with two degrees of freedom. Assuming an electron wave packet entering the structure
from the left and a suitable initial state for the cavity mode, we can integrate out the
subsequent time evolution and look at the exchange of energy between the electron and
the cavity mode. ,

) .
=2 J
Vv

£ 04l -
£ M -
5 02} .
0.0t .

0 400 800 1200 “,

t (fs)

Fig. 6. Part (a) shows how the photon number is increased from vacuum during a single
electron event. The wiggles are free-electron oscillations in the field. Part (b) shows the

occupation probability of the heterostructure. We can see that the tail decays approximat G&,
exponentially. ,

the barrier structure, with some probability it tunnels and emits a photon. 1 40 ;

case shown, this happens with probability 0.23; thus each electron leaves Umrmlm.opmmn
photons. This is the single process gain of the device. In part (b) of the figure, we shoW

the probability for the electron to be found inside the barrier structure. It penetrates,
and it subsequently leaks out in a nearly exponential manner as suggested by [8]. The
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whole process is, however, over after 1000 fs as was stated earlier. The state of the
cavity mode is written in the form

| field) = Co | 0) + C1 | 1). (11)

The vacuum and single photon probabilities | Co |? and | C; |? are shown as functions

of time in Fig.7.

1o G ]
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W

o
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Fig. 7. The behaviour of the vacuum amplitude Co and the one photon amplitude C; during
the single interaction event. As we can see, the process is completed in 1ps.

1
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Fig. 8. The wave function of the combined single electron and the cavity mode. Both are
Eiven as functions of their energies expressed in terms of the wave vectors. The electron energy
is plotted separately for transmitted components (positive energy) and reflected components
(negative energy). The electron wave components are separated by the photon energies Aw.

We can also look at the gain in the laser cavity when it is initially not empty. We
choose to display the two-dimensional electron-photon wave packet in the momentum
Tepresentation; K for the photon and k? for the electron. In this manner the scales
8lve also the energy of the particles. For the electron we, however, multiply the k% by
the sign of k to separate the transmitted wave from the reflected one. For the photon
States the probability [ (K | n) |? has got n + 1 maxima for the state | n).
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In Fig.8 we show the final state starting from n = 4; this is seen both in the transm;j
ted and the reflected waves. In the transmitted one, there is a certain probability thg;
the field ends up in n = 5 (6 maxima) but then the electron energy has been decreage
by the amount (%iw). We also see a loss process, where the electron is accelerated bu
the field goes to n = 3 (4 maxima). The gain process is seen only after the barrie
structure, the loss can occur also in reflection. f

We have thus shown that the single electron can be used to feed photons into th,
cavity. This is micro-laser operation. If the cavity could be made to have low enoug
losses, the device could be operated in steady state. This is a considerable technica
difficulty for a realistic material, but the basic principle has been established by thes
calculations. For the detailed discussion of the operation and the choice of parameters
we refer to the original publication [7].

a) £ = 606 fs

x, =-140.8 nm

S O =
S o
L

[wGex,)l (arb. u.)

250 0 250
x, (nm)

Fig. 9. A two-dimensional electron optics configuration displaying the characteristic aio.,m_ul
pattern. The barrier in part (b) is the same sequence as in Fig.2, but with two penetrating
holes. After the wave packet passed the barrier (at t = 606 fs) the position at the dotted.line
shows the interference pattern shown to the right in part (a).

5. Conduction electron optics

The technology to design potential structures of arbitrary shape allows one to make:
beam shaping devices for conduction electrons. It is hence possible to imitate all the
components of conventional optics for electronic wave functions. To illustrate the use
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of such artifacts, we choose the sequence of barriers given in Fig.9 ?v By selecting mrm
electron energy in the transmission or reflection region, we can at will choose a &Emfo.:
where the electrons do not see the barriers or one where the structure is opaque. This
corresponds to having a material with variable optical properties. Various applications
are presented in our work [9]

In Fig.9 we present a single example where the structure is shaped into an electron
version of the celebrated two-slit experiment; see the structure in the lower part of the
figure. This configuration has played a central _.oﬂm. in the discussion of quantum theory
[10] and it has been experimentally realized by optical waves (Young’s experiment), free
electrons and most recently with atoms {11}. Figure 9 (a) shows that the same effect
can, in principle, be achieved with the charge carriers in a semiconductor structure.
The wave function is the envelope of the electronic state, but the physics remains the
same. The distribution of probability in the wave packet after the slits is given by the
picture to the right; it represents a cut along the dotted line in the picture to the left.
In spite of the imperfections deriving from the use of a barrier structure and a finite
wave packet, the familiar diffraction pattern is seen.

We have thus suggested [9] that the technology to manufacture suitably designed
heterostructures gives the possibility to make integrated structures for electron optics
in semiconductors. If relaxation processes can be avoided, this would provide the pos-
sibility to copy the device structures of integrated optics for the conduction electrons.

6. Conclusions

In these investigations we have found that many features of electron dynamics in
heterostructures can be illuminated by the use of propagating wave packets. The com-
putational resources available only allow two degrees of freedom to be treated, but this
offers a multitude of interesting situations. Fundamental physical processes as well as
idealized simple devices can be discussed.

The single electron picture used here must, however, be corrected in many ways.
The Coulumb interaction leads to a genuine many-body problem, and the appearance
of excitons and possibly collective oscillations complicate the picture. These effects are
well understood, but this does not mean that they are easy to treat numerically. It
will be a challenging task for both theoreticians and experimentalists to find out which
Phenomena survive in models more realistic than the ones presented here.
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