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THE OPTICAL SCHRODINGER EQUATION!
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Paraxial light wave and matter wave optics are compared. Within the paraxial
approximation the slowly varying amplitude of a light field in a dielectric medium
with a spatially dependent refractive index satisfies an equation which has the
form of a Schrodinger equation: the ’optical Schrédinger equation’. The custom-
ary procedure of neglecting second order derivatives is replaced by a systematic
expansion which allows the calculation of corrections to the lowest order result.
The general theory is illustrated in an example.

1. Introduction

The investigation of paraxial wave propagation is certainly not a new topic; numer-
ous authors have studied paraxial optics for light waves [1]-[3] and for matter waves
{4],(5]. The emphasis of the present work, however, lies on the direct comparison of the
two phenomena, which has also been adressed by Bordé [6]. Furthermore, there are
new experimental developments which make such questions interesting again from new
perspectives: fiber optics on the optical side and trapping and cooling of neutral atoms
and atom interferometry on the mater wave side.

The evolution of a massive quantum particle and a travelling light pulse are both
wave phenomena and thus have many similarities; for instance the time-independent
Schrédinger equation of quantum mechanics resembles the Helmholtz equation of classi-
cal electrodynamics. Apart from the probabilistic interpretation of the quantum wave-
functions, an important distinction between a light pulse and a Schrédinger particle is
the vacuum dispersion relation: as a consequence of their quadratic dispersion relation,
matter waves cannot retain the shape of their wavepackets as they propagate through
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empty space, since the group velocity and the phase velocity differ ~ in contrast to lig
waves in vacuum. -

If one makes the paraxial approximation in this case, one obtains an equation whid
is formally a Schrédinger equation (6,[7]. In this paper we will make a quantitat
comparison between a paraxial (quasi)monochromatic light beam propagating in s
a dielectric medium and its Schrédinger analogue. Our goal is to estimate the "opt
corrections’ to the Schrédinger equation. In this paper, for the sake of simplicity, w,
will concentrate on scalar fields, but our approach is also applicable to true vector figlg
situations, as will be discussed elsewhere.

2. The paraxial approximation

We consider a paraxial and quasimonochromatic wavepacket with main propagatio
direction along the z-direction, i.e. k ~ kg = koe, and w ~ wy = ckyg propagating in m
inhomogeneous dielectric medium with an electric susceptibility ¢(x) = €(w & wo; x) ang
thus a spatially dependent refractive index €(x) = n?(x). For some types of polarizatio
the three vector components of the electric field decouple and one can use a scalar wav
equation [8].

Let our starting point thus be the scalar wave equation

n?(x) 92

o g Elxt) = V2 E(x,t) .

Splitting the field amplitude F(x,t) into a rapidly and a slowly varying factor

E(x,t) = ag e"(X)~iwot gy 4y

with some suitably chosen phase factor ¢(x), the slowly varying amplitude £(x
isfies the equation

n’x) (90 \? 2

— AMM - nsov E(x,t) = V2E(x,1),
where we have defined V,, = V + (V). -

The paraxial and quasimonochromatic approximations correspond to neglecting the

0%/82? and 82/8t? derivatives of the slowly varying amplitude, on grounds that
%€ oL o8&
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For monochromatic fields with time-independent slowly varying amplitude £(x,t) =

£(x) and setting o(x) = kongz (with ngy being some typical value of the refractive:
index) this procedure leads to

K ko P <K wg ; . (4)

1

) e 5 ) I [n%(x) - n?
smlﬂ@?;\_lIIw’&«MQ»ﬁ?,FJIM ﬁ

- T@,i )

g

odi , 319
The optical Schrodinger equation

(z,9;7 = konoz) = &(x) for i € {z,y,z} and the definition V3 = (9%/9z* +
T, YT =

with A\m This equation is formally a Schrodinger equation for a manoNc.m vwiﬁ? of

. mu\m& ) = (kono)? evolving in the potential Vope(x) = (n*(x) — .:WV\m:o in a (dimen-
tmass T T W = konoz [7]. Thus the 3D Hel mholtz equation is mvwnoﬁamﬁm&b% w
umoaﬁmv o Mwoc with a two-dimensional potential, which is in general also ’time’-

6dinger equa : o w2 ; . all
WMWH%HW. Note that the ’optical potential’ in this context must necessarily be a sm

S 3 )
—Xnaﬁcwao: (i.e. :»T& ~ nd) Mou nosmwwm_o Eq.(4) and the separation into a ’slowly
#uc.? ,HmE&MEMWMMMM% Mw M. MM@MMMMM% comparison of paraxial wave E.ovwmwiou of
If on Nﬁm_. waves and wants to calculate the non-paraxial ’optical corrections’ to
ligth ms&.%ﬂ er solution, a more systematic approach is required. Like Lax et al. E,
the 5¢ e S_ Mﬁwa the @wmmxmw_ approximation for wave propagation in a medium with
t—.o._zém m?mi._?m index, and by Garrison and Deutsch [4] for paraxial wave propaga-
q_.ou__ﬂomw aMEE particles _5 free space, we introduce a sma ll expansion parameter: the
:o:-M @nwwaémos the k-vectors in the propagating beam and the wave-vector ko = koe,
Mwmro ‘carrier’ plane wave propagating in z-direction. Defining

0 =L(ko,k), k=kot+gq (6)

it follows from a simple geometric argument that the transverse mmSwSo:um of the wave-
vector scale as |qr|/ko = O(®) and longitudinal ones as |g;|/ko = O(©?). For quasi-

2
onochromatic beams (w — wp)/wo = O(©%). .
" For the series expansion in © we rewrite Eq.(3) by formally taking the square root

mx) (8 _ s.sov b, 1) = iy V2 P(x,1) )
c ot
and transform to scaled variables as follows
%7 = Okono xy, z=0%%mgz=0%r, t=0%t. (8)

We arrive at

smh@AuN.mV = ..m..l _Ml“_.ll./\\®A>A +O2A; +Ag+0-2A_5 — HH— .GAUN_ mv A@V

ot 0?2 |n(x)
with
mu
Be= "5z ,
-y Oz . 8
Ay=-Vi i == - 2il; =
_(8T: Ty (8 ?Wv
DQHHJW.INA%M .MWIV!MsAMJS%NINLT Q%@
A_,=Ti+T}, (10)

and 'y, = 0 HQNSTNV = O(1) with &; € {Z,7, Z}. So far Eq.(9) is still exact for scalar
Fi ™ BF;
fields and arbitrary p(x).
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We now pull out a ’carrier’ plane wave for the expansion in ©, that is we c
¢(x) = konoz = /02, which clearly gives rise to fast oscillations for 7 ~ 1. The
A_3, which is inver sely proportional to ©, vanishes, since IZ=T m = 0, and I'2

For the remaining part of the amplitude to be slowly varying we require
1

e?
on the same scale and the deviation from a typical value of the refractive inde
assumed to scale like [n%(x) — n2] /n2 = 0(9?).

Let us now demonstrate the usefulnes of the series e
monochromatic fields (that is 1 is independent of ¢ or ¢
?), and secondly of refractive indices which has only variations in the transverse pro
(n(x) = n(z,y)). Expanding the square root in Eq.(9) to lowest order immedi
brings us back to the ’optical Schrédinger equation’ Eq.(5). For the higher order.
rections we expand the 'wavefunction’ ¥(Z,7, Z) (in scaled variables) in a POWwer: sey

<

ko [n(x) — no)z = — [A(%) —no)z < 1

xpansion for the special omma
he corresponding scaled varialy y

of © -
Y(E,§:2) =) 0% g)(z,5:7) |
u=0
Insertion into the wave equation immediately leads to
3 -
j— — )z 4:3 — —
Mn%‘m mﬂg .% AHL\MNV 0 H 0
e] - 1 8% . :
9 Cu)(= = 3 _-— 2 gu-2) = — - =123, ... (14
T%M mu; @ Aﬁv@.Nv 9 972 ﬁy AHMQ_NV H 3 uw. A
with
Hy = —Vi+4Vu(z,§)
H :N e 2 %
Vope (2,9) = ﬁ . ( v“_ g

7
ng
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We see that only the lowest order amplitude $(°)(z, 7;
the higher order ’optical corrections’ are determine
Eqgs.(14). ’

This hierarchy of equations is solved in the following way: first we determine the
eigenbasis {@,(z,9)} of Hr and expand the zero-order amplitude PO (z,§;2) in this
basis with ’time’-independent coefficients am.sw since Hr is independent of z, it commutes
with 82 /872, which means that the right hand side of Eq.(14) also represents a solution
of the homogeneous equation Eq.(13}. Setting

PEE,5;2) = 3 eM(E) e B, (2,)

n

Z) satisfies a Schrédinger equation,
d by the inhomogeneous equation

p#EO

with Z-dependent coefficients, we get the recursion relation

cmz) =

(2 2) 52—, - i - ~2) -
P2 (2) 4 B o (z) — 2 B2 o240(3)

DO e,

1-QH® GT
by
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e dots represent differentiation with respect to z. This can easily be solved
n, assuming the ’initial condition’ nGEAm =0) = 0 for p > 0; the first few

e orctions c)(z) = ¢P(2)/cf) as functions of a(2) = ~32E2 are found to

— i
=4
_%mn& correc

o
p = Ll: c@(z) = a(?) (18)
5\2
po= 2 CWE) =a(3) b,@.l@wkw_v (19)
o852, 2@ p | ) 20
po= 30 COE =) 7B+ — 2B+ —; » (20)
N Tas o@D T al@ e a(2) 21
po= 4 CO@) =a@) B+ —5- B 4 =3B+ —— . (21)
Returning to unscaled variables
2 Ly 2, ~iEnt
Yo,y ) = ) e pn(z,y) + ) el (=5)Eir e enl(e,y) +..., (22)
n n

gives us a rough estimate of the timescale 7. on ﬁrmnr the corrections vo.no.am mamﬂunﬁsﬂ
the first order correction grows linearly &g time, wnw thus the <mr.9$~ Om. the wm_w
order approximation is limited to T <« 7. with 7, = 2/ .m:.: S_._.ma.m .m_ao is the Qm.a:gm,:m
belonging to the eigenfunction of maximum overlap with the initial swm<mm:=orom. m_,
7 ~ 7. the approximation of the whole sum by the first (few) leading terms breaks
down.

4. Harmonic Motion as an Example

One of the simplest possible examples is harmonic motion: we assume aruwn the
refractive index is a function of the transverse coordinate x w~o.=m. given by n T& =
n} (1 - k%z?); in the paraxial approximation (zeroth order) this leads to an optical
Schrédinger equation with a h armonic potential
, 1

= —K

2

Nﬁ.w

Vopt(2) (23)
Corresonding to an angular frequeny wyo = &/kone. AOUio:um_M armwo wm a restriction
on the "coupling strength’ g, since n?(x) has to stay close to n2, i.e. k22 < 1, over the
Tange of = of interest.) . o

In Fig.1 the "Helmholtz’ and the *Schrddinger’ evolution of the (same) initial Gaus-
sian wavepacket are compared: for the light wave the r-axis no—ﬁ.wmvon&m to the prop-
agation direction z of the wavepacket in the confining refractive index .EOEP for nr.m
rresponding fictitious Schrodinger particle T = kongz has the meaning of :5. ET
Sm:mmo:_mmmv interaction time in the harmonic well; on the left hand side the position
distribution Fs(z;7) = |¢(z; 7)| is illustrated by means of a contour plot and com-

Pared with the solution Fyl(z,z) = |€(z, 2)]” of the Helmholtz equation on the right
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Fig.1. Position distribution of the Schradinger wavepacket in the harmonic potential Qam&.

deviations from the full Helmholtz solution (right) for an initial Gaussian wavepacket with
Zo = —2 and Azo = Az .

hand side. We have assumed ng = 2 and k2 = § x 1073/X2 with A = 2w [ko being’t
wavelength of the carrier wave in vacuum, which serves us as typical length scale
the problem. The ’interaction time’ = increases to twice the harmonic oscillation tim
tvo = 2rjwyo.
We r..m<m chosen an initial Gaussian wavepacket with its width Azy being equal
to the width Az.., = 1/v/2konox of the ground state in the harmonic potential (c
w:wﬁm:_u state) and an initial displacement To/A = ~2. The discrepancies betweenthe
mo_.a:wo:sv and the ’Schrédinger’ fields are illustrated on the right hand side by means
of differences in the position distribution: they build up from zero being relatively:
m:.gm.: near the turning points of the Schrodinger wavepacket Srmwm,arm transverse
minimal, but increasing with every oscillation. _ .‘

) If ;o.nonm_ m:omw.mnao: time is only a fraction of r. adding the first few terms of the
above serles expansion to 2.6 Schrodinger solution yields an excellent approximation 0
te exact Helmholtz field; this is demonstrated in Fig.2 and Fig.3, where the real part 0
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Fig.2. Including the ’optical corrections’ up to order u. Parameters as in Fig.1.

the difference of the Schrodinger wavepacket plus corrections up to order u are shown for
Tfinal[Te = 0.28 and Tfinat/7. = 0.01, respectively: including higher order corrections
the differences are seen to be substantially smaller in magnitude and to occur at later
times. Note that there is no significant improvement between p = 2 and p = 3 for large
times 7.

In Fig.3 the initial displacement is chosen closer to the bottom of the potential

Zo/A = —1, making the initial wavepacket more ’paraxial’ than in the example of Fig.1
and Fig.2. In other words: 7 is larger now (and thus /7. = 0.01) due to the dependence
on the eigenvalue E,, of maximal overlap (which is smaller for a coherent state with
smaller displacement).
_ After having tested the general theory in simple examples, the logical next step
1s to proceed to more challenging and physically more interesting problems, involving
for instance the true vector character of the electromagnetic field: if the three spatial
Components do not decouple, one can no longer associate one single optical Schrodinger
¢quation with the paraxial wavepacket. Another interesting system to apply our theory
to is the tunneling in a double-well potential, which can be viewed as a model for an
Optical fiber coupler for a paraxial light beam initially confined to one fiber’, i.e. to one
wel],
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Re[E, - E*]

x/A . x/A -

Fig.3. Same as Fig.2, except for a smaller initial displacement zo/A = —1 leading to a more
paraxial beam with considerably less differences between the two solutions accumulating in
the same interaction time Tfinai.
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