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STATE RECONSTRUCTION IN QUANTUM MECHANICS!
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The observation of moving one—-dimensional wave packets reveals their quantum
state. The theory [U. Leonhardt and M. G. Raymer, Phys. Rev. Lett. 76, 1985
Cwmmv_ is reviewed. Additionally, some semiclassical expressions and a concise
reconstruction formula are sketched.

1. Introduction

A typical experiment in quantum mechanics consists of three steps: preparation,
avolution and measurement. First, the object of interest is prepared in a certain state.
IThen it evolves according to the experimental settings and, finally, some physical quan-
Bities of the quantum system are measured. This scenario is repeated sufficiently often
on an ensemble of equally prepared objects to achieve statistical confidence in the mea-
urement results. Quite typically, the goal of the experiment is the study of the evolution
fni terms of the measured quantities. :
| . Suppose, however, that the last two steps of the experimental scenario are well inves-
Rigated and perfectly under control. In particular, we assume that the system evolves
in a known way. Can we use this information to infer the prepared state? Evidently,
his could be useful for exploring the preparation process. In a sense, we can consider
the combination of the steps evolution and measurement as one measurement proce-
dure designed to investigate the initial state. However, there is an important difference
between this type of “quantum measurements” and conventional experiments: Observ-
ables at different stages of the evolution process do not commute in general. Observing
One particular quantity during the evolution may explore the wealth of complementary
Bspects of a quantum system. If this is possible then we can determine the complete
uantum state of a physical object from experimental data.

. In fact, in a pioneering quantum-optical experiment [1] the quantum state of a
ingle light mode was reconstructed by means of tomographic imaging [2,3]. This first
Practical demonstration of state reconstruction stimulated other experiments on light
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[4-6] and diatomic molecules [7] and initiated a series of theoretical papers [8-44]. (Tt w;
also one topic of the last Budmerice meeting [42-44].) So far all performed experimen
have been restricted to one-dimensional harmonic oscillators (light modes and molecy]
vibrations). The evolution of the system was harmonic and the position z (or a positio;
like quantity) was measured at different times ¢ (or phase angles). :

2. State reconstruction

How to infer the quantum state of one—dimensional wave packets from ovmeinm
their motion in arbitrary potentials? Quite recently, recipes were developed for th
reconstruction of the complete density matrix [14] and of the population numbers BE. .
How do they work? We assume that only the discrete part of the spectrum is exciteds
The measured histograms pr{z,t) of the position z evolving in time ¢ is given by’

pr(z,8) = (2,2[p]2,1) = 3 puw b (#) (&) expli (w — w,.) 1

pv

matrix

pmn ={m|p|n) ;
in energy representation. The wave functions ¥n(z) are the normalizable mo_:ﬁonm “w
the stationary Schrodinger equation s

[~ 2+ 0@)] ¥ =t

with energy (eigenfrequency) w,. We have scaled all physical units in such a way the
the mass and % are unity. 5
How to infer the density~matrix elements from the position distribution? Wha$

about using Fourier analysis? In this way we can distinguish terms oscillating af
particular transition frequency. We obtain for a large observation time T

+T/2

1

T \ pr(z,t) expli (wm —w,)t] dt
—-T/2

3 P () ¥ (2)

pv

P (2, wm — wn)

where the summation is restricted by the constraint
Wy — Wy = Wy — Wy, .

As a second step, we would like to find a set of spatial sampling functions f.,(z)t0
project the density-matrix elements out of the Fourier-transformed distribution
400
P = \ Pr(z,wm — wn) fmn{z)dz .

-0

el For thi
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< we must require that the fi,.(z) are orthogonal to products of wave functions
+00
[ 4@ 0l Frn(a) 2 = B ®)
—o0

given the frequency constraint (6). Surprisingly, the sampling functions are quite simple

» 9
| frn(@) = 5= [#m(2) n(2)] , (9)
ruwmm been recently shown in a new theorem [14,29] on the Schrodinger equation. Here
¢n denotes an irreqular wave function with the Wronskian
Opn Oy
. " ¥n =2. 10
G oz " oz (10)

What are irregular wave functions? We know that every differential equation of second
order like the stationary Schrodinger equation (3) has two linearly independent solutions
with a non—vanishing Wronskian. For most frequencies (energies) w both solutions
grow exponentially, but there are cases where one of the solutions decays. As we know
very well since Schrodinger’s “Quantisierung als Eigenwertproblem” [45], this leads to
the quantization of energy. The decaying (normalizable) solution of the Schrodinger
equation is the regular wave function. However, the second independent m&cﬂo:“ ie
the irregular wave function, still exists as a mathematical object. Here we see that it
is physically useful to reconstruct the quantum state of moving wave packets. We note
that the Wronskian (10) takes over the role of the normalization for the irregular wave
functions.

3. Semiclassical theory

How do the irregular wave functions look? How do the sampling functions behave?
Probably the easiest way to answer these questions is studying the semiclassical theory
for regular and irregular wave functions. For this we simply apply the standard WKB
technique [46). We introduce the semiclassical momentum

?n(z) = V2w, — 2U(2) (11)

for a given energy (frequency) wy. At the turning points a, and b, of the motion the
Momentum vanishes

E:?L =palbn) =0. (12)

>ooo~&:m to the semiclassical quantization rule the phase integral should yield

&? dr = 2r A:+Wv (13)
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monmwocsmlavvoas.wgnrmn_ﬁmmo& gainmvom:ﬂm.iammbonmﬁrm time-indepeng,
part of the classical action by :

T

Sn(z) = \ Palz’) d2’ .

Gy

SEE R R

The momentum p, and, consequently, the action S, is real in the classically allows
region between the turning points. On the other hand, p, and S, are purely imagin
in the forbidden zone. A regular wave function oscillates in the allowed region -

Yn =¢n %Mp\u cos A.m.a - MV

and decays exponentially in the forbidden zone

Cn _
n =g lpal ™ exp (=150 -

Knowing these results we easily guess the semiclassical formulae for the irregular ?.w
functions. We must only satisfy the Wronskian condition (10) for the ¥, given by ]
expressions (15) and (16) and the irregular wave function. We i

this is achieved for

@n = 2¢71 p71/? sin Am., - @

in the classically allowed region and for

¢n =27 [pa| ™2 exp (+]S,])

zone, whereas the regular wave functions decay. For this very reason they are usually
discarded as being physically meaningless, expect some rare applications in atomic scati
tering theory [47]. However, the product of the regular and the irregular wave function
1s well behaved in the classically forbidden zone, since
YmPn = Cm nMN |Pn EQ_IH\N exp (|Su] = [Sm])
with
xr

[ @1~ tomic] e+

Gn

_.m.:_ - _..m.w:_

I

[ 2 {(wm — wy)

J a1+ (€]

dé +c .
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5

gies w, and wp, are different in general the classical turning point an
L3

H. . . .
fsince ihe <° as well. Therefore we obtain a constant ¢ in eq. (20).] This expression

iffers from @m
gmm to x \
1Sa] = |Suml ~ (@ — wn) \ RUE 2 dE + ¢ (21)

Fyint
k3

large « [with another (unimportant) constant ¢’} We see that for w, > wn the
for la

f and @, decays nicely. . . . .
!.owcnaww nﬁm:mwnw:% M:oima region we obtain a very simple semiclassical expression for
. In

the diagonal sampling functions [40]
fan(z) ~ 2sin[2 5, ()] - {22)

To find this result we take advantage of the formulae Cmv and (17) and :mmm,ooﬁ HJM
riation of the momenta p, in the fundamental S?ﬁo:.@ .»dw the fun. ormu
by <M ws that the diagonal sampling functions are bare oscillations of the action S,
meevimwnm the frequency as the regular wave functions. .Hrmn.mmono ﬁrm.% are able to mno_MmM
the typical features of the wave functions squared. A mmwsvrum. ?.:25: Jan(2) oﬂm HWo
perfectly with ¢2 and it is orthogonal to wr other A._F\. This is ermr nmwmouldmww he
functions fnn(z) do detect the diagonal density—matrix elements in the time-averag

probability distribution
Pr(z,0) = 3 _pw ¥ (2) - (23)

We have seen that we can understand the behavior of the irregular wave m.ssoﬁ.mo:m and
of the sampling functions with the help of the semiclassical WKB approximation.

4. Summarizing formulae

We have achieved some familiarity with the irregular wave functions. .hm_.. us go a
step further to summarize our results in a concise and general reconstruction mo.ﬁscwum.
The density matrix parq in an arbitrary basis is related to go energy representation by

the expression .
pora = 3 (a |m) prun (m] @) . (24)

The time—dependent regular wave functions ¥, (z, ) for the basis states |a) are given
k i 25
Saﬁﬁ_uv = MUAS\_Qv@:AHV mk@ﬁl—E:S . A v

They are solutions of a time—dependent Schrédinger equation with the .vonmznmm_ Ulz)
and the initial condition ¥, (z) = (z |a). We define irregular wave functions @q(z,t) as

walz,t) = MA:*avﬂ:?v exp(—iwgl) . (26)
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Using these expressions and the theorem (9) we recombine the separately consiq,
sampling steps (4) and (7) in the final formula oo

o = {5 [V20(2,1) (e, )] ).

Hromoczawnwowmﬁm%:oﬁomzmﬁwmmoiaraomvmoﬁﬁoera mxvmaamiwzwammm“
(z,1) data. i

The observation of the moving wave packet reveals the quantum state at ¢ 2
course, for this we need to know the dynamical law of motion, i.e. the potential iff
in the Schrédinger equation (3) to calculate the required regular and irregula;
functions. Formula (27) shows how to sample the density matrix from observatio
the position z evolving in time t. ;

We may also express the observed quantity, i.e. the probability distribution pr(z;4;
in a similar way as the reconstruction formula (27). We find .
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pr(z,t) = MuP_:_Aa.“ |a'y(afz,t)
a'a

which is
pr(e, 1) = (Yor(a, 1) 5(2,0)), -
Here the brackets denote an average with respect to the density matrix.

The two formulae (27) and (29) summarize concisely the mutual relation between
the quantum state and the observed quantity. The probability distribution pr(z,1).
a quantum average of the product of the regular wave functions Yar(z,t) and e (21
On the other hand, the density matrix is a classical average of the derivative of
product of the regular and the irregular wave functions.

Is this result a happy coincidence or could it be a principle of Nature? Are the
dynamical laws of quantum mechanics designed in such a way that quantum states ce
be reconstructed? Everything fits that nicely together — the Fourier transformatior
(4), for instance, generates exactly the right frequency constraint (6) needed for
orthogonality (8) of the spatial sampling functions. Indeed, we may speculate. rw.
there might be a deeper reason behind these mathematical games. Maybe we have jus

caught a first glimpse of an interesting structure relating quantum states to observations:
There is certainly much room for future research. :
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