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The concept of intrinsic and operational observables in quantum mechanics is in-
troduced. It is argued that, in any realistic description of a quantum measurement
that includes a detecting device, it is possible to construct from the statistics of
the recorded raw data a set of operational quantities that correspond to the intrin-
sic quantum mechanical observable. Using the concept of the propensity and the
associated operational positive operator valued measure (POVM) a general de-
scription of the operational algebra of quantum mechanical observables is derived
for a wide class of realistic detection schemes. This general approach is illustrated
by the example of an operational Malus measurement of the spin phases and by
an analysis of the operational homodyne detection of the phase of an optical field
with a squeezed vacuum in the unused ports.

1. Introduction

In the standard formulation of quantum mechanics, the statistical outcomes of an ideal
measurement of an observable Ala) = ala) are described by the spectral measure [1]:

py(a) = [{al®)/® (1)

where |¢) € H is the state vector of the measured system. The spectral measure
contains all the relevant statistical informations about the system, but it makes no ref-
erence to the apparatus employed in the actual measurement. Because of this property
we shall refer to A as to an intrinsic quantum observable.
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A realistic experiment necessarily involves additional degrees of freedom [2] whick
eventually enable the experimenter to convert the raw data into a operational propensit,
density, Pr(a) of a classical variable a [3-4]. This propensity depends on the state of thl
system and on all the devices used in a realistic detection scheme. All these addition,
devices will be referred to as a filter F, that represents the experimental setup require
for the measurement of the observable A. The measuring device is described by th
following positive and hermitian operator F- (a) that satisfies the relation:

\ da F(a) = 1.
In terms of this filter operator the propensity is
Pr(a) = (¥(a)).

We see that in a realistic measurement the spectral measure in the decomposition o w
A is effectively replaced by a positive operator valued measure (POVM) da F(a) [5
In view of the linear relation between the propensity and the POVM, the operation
statistical moments of the measured quantity are:

at = \&n a"Pr(a) = \.&a a™(F(a)) = A%WJ ?
where ‘
\MWL = .\&m a”F(a), (5

defines a unique set of operational observables associated with a given POVM for
given filter F [6].

As a rule, the algebraic properties of the \Mw.; operators are quite different fron
those of the powers of A. In particular, a factorization is typically impossible, so that
for instance, A?) does not equal (AD)2. -

It is the purpose of this work to provide an explicit construction of the POVM an
the associated set of operational observables for two distinct systems, both leading t
an operational algebra of sinus and cosines operators. The first system will be related
to phases of the spin [7] probed by the so called Malus filter [8], and the second system
will be an optical field probed by the so called homodyne filter [9]. :

In both cases we shall derive operational operators corresponding to the phases o
the spin s or of the optical field. These operational observables will define an operational;
quantum trigonometry of the corresponding phase measurements.

2. Spin Operational Observables

In this section we derive operational operators of the spin phases and describe a simple
idealized experimental scheme leading to such operational observables. This experiment

is based on the Malus law for spin. This law predicts that the transmission of a spin-
1

5 through a measuring apparatus is given by cos? 2. where a is the relative angle

7R
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the orientation of the detected spin and the orientation of the Stern-Gerlach
n

vmns.mmm_.. This property can be generalized to a system with arbitrary spin s. We
vo_wnwmmmam that such a system is described by spin coherent states |2), where the
sha

id angle characterizes an arbitrary spin orientation on a unit mvrmnm.. These spin s
8” Mi states are obtained by a rotation of the maximum ”down” spin state |s, —s)
coher

(10]: Q) = exp(rSy — 7°5_)|s, —s), (©)

where 7 = wmml.s and Sy are the spin-s ladder operators. The spin coherent states

form an over complete set of states on the Bloch sphere:
2s+1
4w

\% QNQ| = 1. (7)

Using these formulas, it is easy to obtain the Malus v—dev._:.@ for a transmission of
m:nvmm state through a Stern-Gerlach apparatus with orientation Q. As a result one
obtains:

p = [QIX)I? = (cos 2)*. (8)

This quantum mechanical expression for the Smumsmmmmw: ?uoawb provides a mosﬂmﬂ_
ization of the mvm:-w Malus Law to the case of an wwgenm_.%.mva.m.. A measuremen
leading to the Malus law can be easily constructed at rwm,m.a in vE.ch_m. Let assume
that the Hilbert space of the system is extended v« a Eﬁ::m device Amson.roa spin-s)
initially in the "down” spin state. A measurement is m.mmnzvm& by a dynamical process
which generates a correlation between the system being amﬁ.mo.no& m:.& the measuring
filter. Due to the unitarity of the interaction with the m:m‘ﬁ it is possible »_.o select the
interaction parameters in such a way, that the wave function of the combined system

evolves in the following way:
fs,—s)r ®1Q) = N5 @ |s,~s) (9)

From this relation it is clear that a measurement of the filter orientation leads to e.vo
spin Malus law, which in the space of the detected spin is equivalent to the following
propensity:

25+1,,
pr() = 2 ey (10)
4w
This relation shows that the corresponding POVM is just:
F@) = w|w+|:3§ with \% F@)=1. (11)
T

Having this simple picture of spin measurement we will ﬂoow for a:.wica ovmnmﬁo:m_
observables connected with the Malus experiment. There is a variety of operational
Operators that can be associated with such phase measurements. For example the
statistical moments of the azimuthal orientation are given by:

cos™ § = \&D cos” O Pr(Q) = AQW;V (12)
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where the operational azimuthal cosine operators
oy = \ dQ2 cos™ 6F(Q)

define a unique set of operational ohservables associated with this POVM. All integ

T
in this expression can be calculated and we obtain: §

0% = F(—n,s+ S5+ 1,25 +2,2),

where F(a,b,¢; z) is a hypergeometric function. The first two operational azimuthal
cosine operators are:

vAHv _ _ 1 -
O = H+m.wm.
@mwv = ,w.w+ i !

(1+s)(3+25)2 " "3+2s

In the same way one can construct a corresponding set of operators describing the

operational properties of the polar coordinate of the spin system. Statistical moments
of the polar angle

exp(ing) = \&S exp(ing) Pr(Q) = Am%iv
lead to the following operational set of polar phasors defined as
B = \ dQe™? F(Q).

We assume, that n is a positive integer and that m%.li = E(M1, Simple calculations
give

B = §n (s — S +1—n/2)0(s+ wu,+ 1 +n/2)
¥ F(s+S3+n+1)I(s—S3+1)

)

with ms%; =0 for n > 25 . Two first moments are given by

@.%..C _ »W+H,A.ml%mw*lw\wvﬂﬂm,*..m,‘m.*vw\wv‘ Awov
(s +S34+2)0(s — S5+ 1)

B - gpifSitl (1)
5 — 53 ey

So far we have derived operational operators associated only with polar ¢ and azimuthal
¢ directions of the spin. In the same way, from the statistical properties of the spin
propensity, it is possible to derive operational spin operators. These operators corre-
spond to Malus measurements of unit directions with a filter defined by a spin coherent
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OVM. We can parameterize the three spin coordinates by a solid angle on a unit

te P ;
MMMR in the following way
S, — cospsin 0, Sy — singsinf, Sz —» —cosé. (22)
The corresponding spin operational operators may be naturally defined as follows
= = \ dQ ()" F(Q), i=1,2,3, (23)
where 7 = (cos psind, sinpsin §, — cosf) is a unit vector.

In further discussion we concentrate only on the first two operators from the whole

operational spin algebra

50 = H 3, (24)
' s
9 P
~(2) _ $2 41 : (25)
o M (1+s)(3+2s) " + 3+2s

Operational spin observables are proportional to the intrinsic spin operators, :.o€m<9.
they are modified due to the noise imposed by the measuring apparatus forming the
Malus analyzer.

3. Squeezed Quantum Trigonometry

As a second example of a possible application of the presented formalism we give
a theoretical description and generalization of the experiments recently performed by
Noh, Fougeéres and Mandel [9]. The authors have used an eight-port roEom.VEo detector
{NFM apparatus) in order to measure the relative phase vgémm: two classical or quan-
tum light fields. In such an experiment we measure the difference .Om the wroﬁw: counts
on two pairs of detectors. This quantity is either related to the sine and cosine of the
phase difference of two classical electromagnetic fields (classical case) or may be :wmm to
define the set of operational operators associated with an arbitrary o_mmmwo&. function n.um
the phase (quantum case). Particularly, we can find quantum m.:&omm of meosoamﬁ:o
functions and their powers obtaining the so called “quantum trigonometry” [11].

Below we derive such a “quantum trigonometry” for modified NFM apparatus. We
will assume here, that the additional noise coming through the two free E.Emom ports
of the NFM experimental device is described by squeezed vacuum mnwno (in the orig-
inal NFM experiment this field was a vacuum state). wmnw:mo. of this, erm resulting
operational algebra will be represent by a “squeezed a:m:EB ﬁzmﬁ.u:o.amiu\ :

In our case the propensity Pr(p;s, ¢) = Pr(p+2m;s, ¢) is a periodic function of the
phase, normalized to unity in the following way

\Mlm F,TRMLEHH. AMS

By s and ¢ we denoted the amplitude and the phase of the squeezed vacuum.
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m,.ﬂm., 1: Wigner function of operational operator C(3)(s = 0.5, ¢ = 7/2).

In accordance with the general scheme (4) the phasor operators corresponding
an operational squeezed quantum trigonometry are defined as follows ’

ey = Am.?v?u ¢)), n==142,.

As in [11], we assume from the beginning, that the local oscillator (reference field) i

strong coherent laser field and therefore we are allowed to neglect the noise of the inpul

field mixed by the beam splitter with the reference signal.
We start with the formula obtained in [11]

(b+9ty

(n) s, ¢) = Tr, _
E™(s,¢) = Tr Qm+@334+$vm

5(s, 8)10,)(0,151(s,¢) } ,

and change it for our purpose using a unitary operator .W.AP%Y which generates the;
squeezed vacuum state |s)(s| from the vacuum state |0)(0| [12]. The bosonic creation
and annihilation operators #!, ¥ represent an additional degree of freedom associated
with the squeezed vacuum input at the beam splitter, by b, bt we denote the creation
and the annihilation operators of the signal field. Because of the fact, that the trace'
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Fig. 2: <<.~m.=m~. function of operational operator COA(5=15,46=0).

Try in (28) is invariant under any unitary Sm.:mmOHBQ.SoP variables connected with the
local oscillator can be removed and the only place in (28), where the reference field
contributes is the operator S(s,¢) with ¢ shifted by an unimportant phase that we
shall ignore. .

Using various properties of coherent and squeezed states [12], the trace in (28) can
be calculated and we have

2 w™
B (s, ¢) = \ &ﬂea_saxs‘ ol, (29)

w)

where |w,s) = D(w)S(s, $)|0) is the squeezed coherent state with amplitude w and
squeezed parameters s and ¢. According to our terminology F(s, ¢) = jw, s){w, m_ is the
Positive valued operator measure (POVM) associated with the described experimental
scheme. ‘ .

An exact formula for the phasor may be derived straight from (29). Recalling the

unity decomposition for the (squeezed) coherent states we obtain

m.s:&& —
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(bcosh s — bte'd sinh 5"

Tm cosh s — btei® sinh 5) (bt cosh s — be=i# sinh mv_

S(s,—): :St(s, —¢). (30

(S

When the squeezing parameter s tends to zero the above formula reduces to the resy]
obtained in the reference {11].

The propensity density can be simply derived from (29). If we set w = /T
we obtain the propensity in the form of the following marginal integration

OO
Es;.su\o&:ig_iv.
It’s clear, that the propensity, contrary to the quantum mechanical probability mmzmmmw.
depends on the experimental device. In fact, for each value of the squeezing parameta :
s we obtain a different propensity Pr(p;s, ¢) and a different phasor basis, even thoug}
the probe field remains unchanged.

As it is easy to see, phasors (30) are not Hermitian operators so they cannot cor
spond to observable quantities. Nevertheless, using phasor basis (30) it is possible
define naturally “trigonometric operators”, whose mean values can be measured in’
real experiment — for s = 0 they have been actually measured by Noh et al. [9]. For
example, two first “cosine” operators are defined in the following way

e = wacfw?:y

s = Ly Lipe), pee
c® = w+¢:.a ) By
In a similar manner we can find moments of “sine” operators or, if it’s needed, of an
periodic function of the phase, provided we know its Fourier decomposition. Replacip
the Fourier components exp (iny) by the corresponding n-th phasors, we construchix
such a way the operational operator corresponding to an arbitrary function of the phas
In order to investigate the properties of the phasors we evaluate (numerically) th
corresponding Wigner functions of these operators. Examples of such Wigner functions
are presented in Fig. 1 and Fig. 2.
First we notice, that, according to the terminology introduced in [13], the phaso
have a proper classical limit. If the incoming intensity of the signal field tends to infinit
the Wigner functions of the operational phasors reproduce a classical trigonometry. Thi
limit can be seen in the Fig. 1. and in Fig. 2. Comparing both figures, we observe, tha
an increase of s causes a reduction of the phasors amplitude. As it might have beel
expected, the dependence on the squeezing parameters is gone in the classical limit.
In the limit of very small I, and with the squeezed phase ¢ equal to 0 or 7 we www.

Q@Xﬁ ¢) = /\M\”o.a?v cosfl

where Ag . are two amplitudes of the Wigner function, that depend only on the squeez
ing parameter s and ¢ = 0 or ¢ = m. This resuit shows that the amplitude of the’
cosine Wigner function is literally ”squeezed”. For arbitrary values of ¢ the separation
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the cosine Wigner function into an amplitude, and a purely angle dependent part
m& o longer possible, but a clear squeezing of the amplitude is also observed [14]. For
Bw 0 the Wigner cosine function is zero, which is in agreement with the property that
M&M phase of a light field in the vacuum state is randomly distributed.
Gimilarly we can find an asymptotic expression for the Wigner function Qmw:m, $).

In the limit of small T ;

Ci (5, 8) = 5(1 ~ cls,4)), (34)

where c(s, ) 1s an I-independent function of the squeezed ﬁmnwamﬁmwm.u and its analytical
expression can be derived [14]. It’s easy to check, that c(s, ¢) em:mw either to unity (¢ =
0) or to minus unity (¢ = x). As a result, for small intensities Q—w\v (s, ¢) becomes zero
(¢ = 0) or one (¢ = m). For ¢ = n/2, 3m/2 we have c(s,$) = 0 and limy_,o Qmwv?, @) =
1/2. For small I the squeezing influences the system very strongly. If the squeezed
phase ¢ equals to /2, the quadrature C® Wigner function tends to 1/2 (Fig. 1),
whereas for ¢ = 0 it takes values near zero (Fig. 2). Such a dramatic change of the
cosine quadrature occurs because in the limit of small 7, purely quantum effects of the
squeezed vacuum are important. The squeezing allows one of the quadratures to be
reduced below the vacuum level represented by a uniformly distributed random phase.
The uniform distribution of the phase corresponding to the vacuum state leads to an
operational Wigner function for I = 0 equal to w For a squeezed vacuum, this uniform
random-phase distribution is modified [15] and a significant change of the operational
quadrature is possible. In fact fluctuations below w in the Wigner function exhibit the
quantum nature of the squeezed vacuum. .
Another interesting observation can be made if we look at the phasor’s squeezed
coherent states POVM decomposition (29) and recall the fact, that the Glauber P-
representation of a squeezed coherent state does not exist. This property is related
to the dynamical ordering of the creation and annihilation operators, induced by the
measuring device. For the modified NFM apparatus, with a squeezed vacuum in the
unused port, the antinormal ordering of operational phasor is impossible to achieve.
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