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The reservoir can be modelled by an infinite array of beam splitters and the
superposition of input fields in a lossless beam splitter can be described by the
convolution of quasiprobability functions. We use the convolution relation and the
beam splitter model to derive the Fokker-Planck equation for a system coupled
with a phase-sensitive reservoir. Solving the Fokker-Planck equation, we test the
coincidence of the loss of well-known nonclassical properties with the appearance
of the positive well-defined Glauber-Sudarshan P function.

1. Introduction

The evolution of the quantum noise in an amplifier or an attenuator has been devel-
oped extensively ([1,2] and references therein). The amplifier/attenuator can be mod-
elled by an infinite array of amplifier/attenuator sets each of which gives an infinitesimal
gain/loss. We follow the usual treatment where the matter is traced out and the statis-
tics is reduced to an optical constant. Under this assumption the distribution of the
absorption and stimulated emission centred in a real medium is well modelled by the
uniform regular distribution of the amplifier/attenuator sets. The amplifier/attenuator
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superposes noise onto the signal while the signal is amplified or attenuated, which:
analogous to the action of a beam splitter. In the beam splitter, the signal is atte
uated and superposed with the noise field. The superposition between the attenuate
signal and the noise is described by the convolution relation for their quasiprobabil;
functions. The amplifier can also be modelled by a parametric amplifier and a si
lar convolution relation was found. Using the convolution relations the Fokker-Plang]
equations are found for the evolution of the signal field in the amplifier/attenuator.

It has been well-known that the quasiprobabiliiies, especially Glauber-Sudarshan ‘P]
function (P function), can be used as the measure of the nonclassicality of the gives
field [3]. In fact the P function can be defined for any state including a Fock sta;
[4]. However we are interested in the P function as a probability density-like functio
Throughout this paper the P function is said to exist only when the P function is well
behaved. Among quantum-mechanical pure states the coherent state is the only sta
with a definite form of the P function [5]. The Husimi @ function (Q function) is always
positive definite while the Wigner function always exists but can be negative as we
The fields with classical correspondence should be represented by positive well-behaved:
quasiprobabilities in phase space.

5

In this paper we shall discuss the existence and negativity of the quasiprobabilities}
of the field state during attenuation and amplification processes connected with a finite
temperature bath. We shall compare the moments when the quasiprobability functions
become positive definite with the moments when some nonclassical features such as
quadrature squeezing or sub-Poissonian photon number distribution disappear.

The photon number fluctuations can be measured by the photon number variance:
More conveniently, the normal-ordered photon number variance shows the photon num
ber variance less the mean photon number so that the normal-ordered photon number
variance is useful to show the relative size of the noise compared with the amplified
signal. Even though the photon number variance monotonously grows even with the
phase-sensitive amplification, the signal to noise ratio can be enhanced. It was earlier
suggested that if we use the phase-sensitive amplifier the photon number fluctuations
can be reduced so that a super-Poissonian input can turn into sub-Poissonian durix
the amplification [6]. Despite the work by Barnett and Gilson who proved that it i§
impossible to generate the sub-Poissonian output from the super-Poissonian input by
the amplification [7], it is true that the problem has not been clearly unravelled yet. T
this paper solving the Fokker-Planck equation for the phase-sensitive linear amplifie
we study the photon statistics of the amplified field. i

In a real optical amplifier, distributed loss can concurrently exist with the distributed
gain. Also, one of the main subjects in long-haul fibreoptic communication is how to
amplify the optical signal to compensate the transmission loss, and such amplification
can be realised by using an Er-doped fibre, which is a lossy distributed amplifier.

We derive a very general Fokker-Planck equation for the distributed amplification
in Section 2 when the added noise is phase-sensitive. As a special case we consider the
evolution of an initial Fock state coupled with the thermal bath to test the coincidence’.
between the lost of sub-Poissonicity and appearance of the positive well-behaved P
function in Section 3. The quantum noise in distributed amplifiers is analysed in Section
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As a special case the possibility of amplifying the super-Poissonan field into the sub-
M..om%oiwn field is discussed.

2. Fokker-Planck equation

Consider that two optical fields are fed to the two input ports Om. a beam m.wzimw and are
erposed. The beam splitter is assumed to be lossless, and its reflection and trans-
acmgsg coefficients are respectively denoted by R and T. For convenience we refer to
M..o two fields as the signal and the :omm.m. The signal and noise fields can Vm represented
in phase space by their Wigner functions, S\LQ,V w:m. S\.,NAQ.Y respectively, and ﬁra
transmitted signal through the lossless beam splitter is described by the convolution
;.i _”H.M_
1
T

a—R¢
T ) g

where Wai(e) is the Wigner function for the transmitted signal. This shows that the
signal is attenuated as T < 1 and superposed with the noise. As T goes to zero, the
signal loses its initial property and is substituted by the noise.

The noise is introduced usually by the thermal reservoir, which is phase-insensitive.
However, the phase-sensitive noise can also be considered based on establishment of
squeezed light[8]. The Wigner function Wyq(f) for the squeezed thermal field is Gaus-

sian; )
1= exp AI A : Bz v , (2)

1 Tl
\Aw+>3ml>\~w s+ N-M s+N+M

where N is the phase-insensitive parameter representing the mean photon number of the
squeezed thermal field and M is the phase-sensitive parameter, whose value is restricted

by

Ws(a) = \ ¢ W ()W,

- Wea(B) =

M? < N(N +1); M real. 3)

Linear amplification is modelled by a parametric amplifier. In the amplification pro-
cess, energy is poured into the system by pumping. Differently from the ordinary beam
splitter case, to cope with the pumping we remove the energy conservation constraint,
R + T = 1, in the amplification beam splitter model. The Wigner function Wam(a)
for the amplified signal is then described by the convolution relation [1]

Woam(a) = w \ A War(WW, AF«,MHV . @)

where Wai()) is the Wigner function for the noise, and g is the gain factor of the
amplifier. When ¢ = 1, the signal is kept constant without amplification.

Let us assume an amplifier-attenuator set (am-at set). In the first half of the am-
at set, the signal field is amplified and is superposed with the noise field during the
amplification. In the second half of the am-at set, the amplified signal is attenuated,
and the other type noise associated with the dissipation is added. In this paper we
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derive a formalism for a general case where the amplification noise factors N; and:jf
are different from the attenuation noise factors Ny and M. .
From Egs. (1) and (4), we find that the Wigner function W(a) of the signal fie]q
after passing through the am-at set is represented by the convolution relation
1 a—+/1—-gT ¢
=— [ d% W, _—
wie) = 3 [ e Wl (2L

where the Wigner function Wy, for the combined noise is defined as

1—4gT 2 2
Wio(€) = _|s.|lum|mw_$€ ﬁl_u - gT Aw: + me\v_ ,

where the real and imaginary parts of a and § are, respectively, denoted by a1, a2 and

M—.Mn.

To simulate the distributed amplifier, we consider the am-at sets forming a contin-
yous array by taking the limits ® — oo and A7 — 0, while keeping RAT constant.
_In these limits, we define the attenuation coefficient, x = limar—o R/AT, and the
amplification coefficient, v = lima,—o0€/AT. In the above limit, with Egs. (2), (10)
and (12), we obtain the Fokker-Planck equation for the field which propagates in the

infinite array of the am-at sets:

§ 8 § 0 a 8* b 8
.%MS\T..QV = hM.@lQHleTM%lQMQN.TMWMN MMQIWV S\T.,Qv , Awwv
with the noise parameters
A = T(g-1(1/24 N —M)+(1-T)(1/2+4 N2 — Ma)
B = T(@-1)(1/24+ N+ M)+ (1-T)(1/2+ N2+ M) .
We now derive the Fokker-Planck equation for the infinite array of am-at sets using
(5). The total duration of time when the field is coupled with the am-at sets is denoted
by t, the total number of the am-at sets by R, and the interval between the adjacent am
at sets by A7 with ® = t/A7. The am-at sets are first taken to be discrete components

Under the assumption that the amplification and attenuation in each am-at set is ver
small, i.e.,

where § = k — v and the diffusion coefficients are

a = Qﬁw\M:TZH‘Euv._uz:\w._w\/\mlgi and
b = (1/2+ N1+ Mi) +&(1/2+ No + My) . (14)

It is obvious that the Fokker-Planck equation (13) has the same form when each am-at
get is replaced by the attenuation-amplification set where infinitesimal amplification
follows infinitesimal attenuation.

When 7 is smaller than & the signal is attenuated and when « is smaller than ~ the
signal is amplified. If the gain factor g is equal to unity, le.,y = 0, then the infinite
array of the am-at sets becomes an ordinary attenuator. Similarly, if the transmission
coefficient T' is equal to unity, i.e., & = 0, then the system becomes an ordinary
amplifier. From Eq. (13), we can obtain the Fokker-Planck equations for the pure
amplifier (¢ = 0) and for the pure attenuator (y = 0).

0<1-T=R<«1 and 0 < g-1=€¢xK1
Eq. (5) can be written as

W(a) n:+m|a\%m Woo (€)W, AEV .

VT
We define W(;a) as the Wigner function of the signal field incident on the am-

set at time 7, W(r + A7; ) as the Wigner function for the signal leaving from th

am-at set. From Eq. (9), we obtain the relation ,

W(r+Ara)=(1+R- mv\%m Who (§)Ws Aj e /\%mv , Co

3. Amplification and attenuation of Fock states for M=0

.<<m take a Fock state |m), with m photon numbers, to be attenuated in a phase-
insensitive heat bath (N # 0, M = 0). The Wigner function for the Fock state is

VT
where the argument (o — /1—g¢T €) /9T is expanded as
a—/T—gT ¢
VT

where up to the first order terms of R and ¢ are kept. The usual Taylor expansion for a
real function having a complex argument is used to expand the Wigner function of the
propagating signal field, et

Wn(@) = 2(~1)" L (4laf?), (15)

R—¢ b
~a+ i VR—¢ef=a+ Aa, (11) where L, (z) is a Laguerre polynomial. When 7 = 0, we solve the Fokker-Planck

equation (13) for the attenuation of the initial Fock state.

91+ 2N(1 — e~t) — 2e= "™ 9lal?
Win(a) = -
(c) AL+ 2N(I— e )it P\ T4 2N(1 = e ™)

i -k
Wira+ba) = Wire)+ = m _W@E + Wlﬂ\ms_ « L. |- de=rt|af? (16)
o, [T IN e I T eN (I — 2]
R—c[0*W 2 W 2 W
+ 9 me mu + @QW MN + ®Q~®QM MFM& 3 SLQOH@ t> 0.
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There are quasiprobabilities other than the Wigner function, for example, the Q:agg}
the P functions. Other quasiprobabilities can be obtained from the Wigner functig,
through the following convolution relation [5]:

Rle,s) = [eawe) [ e (A0,

where R(a, s) is the @ function for s = —1 and the P function for s = 1. When i
R(a, s) is the Wigner function. =

The P function does not exist for the initial Fock state but using the relation AS
and Eq.(16) we can see that the P function exists as soon as the system is influenced
by the heat bath even though it shows negativity at some a’s. By the properties of th
Laguerre polynomials we find that the P function Pp:(e) is positive at any a when’
the decay time t is larger than ty, where ¢; is defined by the relation R
—Kty . N

T 14N’

We find an interesting result that the characteristic decay time t; does not depend o
the photon number m of the initial Fock state but only on the average thermal wr&ou
number N of the heat bath. If the Fock state decays into the vacuum the P functio

is never positive definite.
The moments of the field are derived with the use of the Wigner function:

€

({(ahymar)) = [ diatar)ma W)

where QQJSQ:T represents the symmetrical-ordering of bosonic operators. Subst,
tuting the quasiprobability Wi, (a,t) in Eq.(16) into Eq.(19), the symmetrical-ordered
moments are calculated.

Let us now consider when the well-known nonclassical properties are lost during:
attenuation. The initial Fock state is diagonalised and the heat bath is also diagonalised
When an intial diagonalised field gradually approaches to a final diagonalised state the
off-diagonal terms do not appear. Thus neither quadrature squeezing nor amplitude
squared squeezing appears during the attenuation process. The Fock state is highly
sub-Poissonian with the photon-number variance (An)? = 0 by definition. With the
use of Eq.(19) we find the normal-ordered photon-number variance for the evolution ©
the initial Fock state in the heat bath:- :

: (An)? := (N? —m — 2mN)e™ > + 2N(m — N)e ™ + N2, (20

The normal-ordered photon-number variance is zero when the field is Poissonian an
less (more) than zero when the field is sub-Poissonian (super-Poissonian). The normal
ordered photon-number variance exceeds the Poisson (quantum) limit when the decal
time is larger than t,, where ¢, is defined by the relation, ;

—in = 2 (21)

¢ T N+K’
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where the parameter K =+/m? + m—m and, as m is positive definite, 0 < K < 1/2.
We find that the time when for the decaying Fock state the P function becomes positive
does not coincide with the time when the sub-Poissonian nature of the initial state is
Jost. Whereas the characteristic time ¢; depends only on the mean photon number of
the heat bath N, t» depends on the initial photon number m as well. When the P
function is positive definite the field is always super-Poissonian. However the inverse
statement is not always true. For example, in the time interval between #; and ¢5 the
field is super-Poissonian without the presence of a positive P function.

The oscillations in the photon number distribution is another nonclassical feature
of the field [9]. The photon number distribution P(n) is defined as the probability of
having n photons in the given field. This can be obtained as a scalar product of the
Wigner function W{(a) with the n-photon Fock state Wigner function of (15),

mﬁina\%QS?:SEy (22)

Substituting Eq.(16) into Eq.(22), the photon number distribution can easily be plot-
ted for the initial Fock state decaying into the heat bath, from which we can see no
oscillations [10]. It is straightforward to show that the higher-order moments in photon
number distribution, for example (An)*, also indicate that the field is nearly Poissonian
at the decay time 5.

The amplification of a field is inevitably accompanied by added noise. Taking x = 0
we solve the Fokker-Planck equation (13) for the amplified Fock state. The solution is
analogous to Eq. (16) as we replace N by —N — 1 and exp(—+t) by G = exp(yt). Thus
the P function becomes positive at any a when G > G; where Gy is defined as

N+1
By the same analogy we also find that the sub-Poissonicity is lost when G > G5 where
N+1
Gy= —r
PTN+1-K (24)

The characteristic amplification factor G is larger than G so that the amplified
MoE becomes super-Poissonian before the P(a) function becomes positive definite. Sim-
;mw_%, to the dissipation case the field is represented by diagonal terms throughout the
amplification so neither quadrature squeezing nor amplitude-squared squeezing occurs.

4. Quantum noise in distributed amplifiers

We m.wmﬁ solve the Fokker-Planck equation (13) for an arbitrary signal in the distributed
amplifier and analyse the added noise [11]. The Wigner function for an arbitrary input
State of the single-mode field can be represented as a weighted integral of complex
Gaussian functions

Wi(a) = W\%t%twﬁt“ v)exp[—2(a; — E)? - 2(as — F?], (25)
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where the weight function P (g, v) is the positive P function which is a quasiprobabilj
function defined in four-dimensional phase space. The complex variables E and F h
been defined as

E=(u+v)/2 and F=—i(p-v)/2.

The initial Gaussian function of the quantum system remains Gaussian in a line
Fokker-Planck ma:mSoz such as Eq.(13) with time-dependent parameters [11]. Th
Wigner function Woye(o, 7) for the output signal can then be written in the form .

1 2, 12
?\& t& twﬁt,tv

oo [ [ =BEOP  [ea = FOP
xﬂ; C(r)+ D(7) 93-c¢@

Hé\.c:« AQ. q.v =

where the displacement of the signal in phase space is represented by
E(r) = Eexp(—07/2) and F(7) = Fexp(-47/2).
The time-evolution of the noise parameters in Eq.(27) are

1 1 1
C(r)£D(r) = 5" + m Am +MNF Eﬂv + m Am + N2 F 5& (1—e®) .

A. Quantum noise in amplifiers

We can also consider the phase-sensitive amplifier which can be implemented as a stre
of three-level atoms in a ladder configuration with equispaced levels injected into the
cavity where the initial state of the field has been prepared [6, 12]. We denote t
population in the uppermost state by paa, the population in the lowest state by pcc an
the coherences between them by pac and p.s. The atomic coherences pac and pcq brin
about the phase-sensitive effect in the two-photon linear amplifier. The parameters N
and M can then be represented by the atomic variables

N= _ P , M= |..|l_bwn_

Paa — Pcc Paa — Pecc ’

With use of Eq.(19) and Eq.(27) we find the normally-ordered photon number var
ance

:(An)? = G? : (An)? : ¢, (31)

where { ), stands for the expectation value of the signal field and the additive noise 18
G-1)? G(G-1 o
(O (gt by + 2= pcl(@®)s + (1)), (32

2p ala)s —
Abww = Ennvm Paa — Pcc M mwA v

C=

If the additive noise is negative, the amplified field has less photon number fluctuation
than the input field. Tt is clearly seen that if the atomic coherence, pac, is zero the
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additive e noise is always positive. However as the atomic coherence is nonzero we can
pave the negative noise to enhance the signal to noise ratio.

If each atom injected into the cavity is in atomic coherences we have the relation
= |pac|® and the additive noise (32) can be written as

PasPcc
(=G(G- :M@g +2G(G - :al.ll?ﬂ _MH _ (ala)s + (G — :w|€s\wwam, (33)
here

e ¢ = 2ata)s — ((%)s + {(a")2)s), (34)

which has to be negative to have the additive noise uommﬁ:\m The bosonic operators a
and a! have a simple restriction, 2(ata) — ((a?) + ((a!)?)) > —1. It is thus required that

~1<e<0 (35)

for the noise reduction in the amplified signal. The noise reduction in the photon
number fluctuations seems to be possible if the input field satisfies Eq.(35). However
we should not fail to notice that the condition (35) is related to the initial photon
number fluctuations. Because the expectation value of an operator times its hermitian
conjugate is again positive,
S (An)2:
c>—
= (dla)
It is easily seen from Eqgs.(35) and (36) that the input field should be super-Poissonian
to have a possibility to reduce the photon number fluctuations by the amplification. If
the input field is Poissonian there is no intersection between the two conditions {35)
and (36) so that we can say that the Poissonian field does not become sub-Poissonian
during the amplification.

(36)

B. Quantum noise in distributed amplifier for v = &

We are interested in the case when the amplification just compensates the distributed
attenuation. For a special case of K = 7 the mean photon number is calculated using
the relation (19) and the time evolution of the Wigner function (27):

(R) = (AYs + (N1 + Ny + 1)1 . (37)

This shows that even when ¥ = & the mean energy grows due to the noise added into
the signal. In this case the mean field is not changed.

The fluctuation in the photon number is considered using the normal-ordered vari-
ance of the photon number:

GAR)) = ((AR)2 s +7[2(N: + Na+ 1A} + (My + Ma)((a%)s + ((a1) )]
+ P27 (N1 4+ Na + 1) + (M) + M3)?]. (38)

The normal-ordered variance (38) is a quadratic equation with regard to 47 and the
coefficient, for the quadratic and constant terms are positive for initial super-Poissonian
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fields. To reduce the noise in the photon number fluctuation the coefficient of the maﬂ“
order term should be negative so that the minimum value of the quadratic equatioy
exists when y7 > 0. .
When N > 1, the maximally squeezed state has M ~ —(N +1/2) and the coefficient
of the first-order term in 7 of Eq.(38) is :

ANy + Na +1)(R)s + (M1 + Ma)((@2)s + ((a1)?)a)
> (M+ Mo+ DI~ (@) + (@D 39)

for (a2), and ((a1)?), positive. With a simple restriction for bosonic operators [12]

245~ (@) + () 2 02 (@)

we find that when the signal is Poissonian the photon number fluctuation does no

reduce under the quantum limit. A

We now consider the quadrature noise added by the distributed amplification. The

quadrature amplitude operator is defined as i
. 1

Xo = 3 ae™ %0 + mﬁmmmv.

The quadrature variance for the signal field in the distributed amplifier is

. . 1 .
((Axo=0)Hout = {(AXs=0)%)s + =(1 + N1 — My + Np — Ma)yr
2

which is linearly dependent on time. When the noise field is maximally squeezed wi
a proper choice of the phase, i.e., M; 2 & N1 2+ w for N >> 1, the time-dependent term
vanishes in Eq.(42). In other words, no noise is added into § = 0 quadrature. It doé:
not mean that no noise is added into any of the quadratures. After a little calculation;
we find that the maximum noise has been added, for example, into § = x/2 quadrature;
IfMy 2~ —Nig-— w for N > 1, the maximum noise is added into the § = 0 quadrature
while no noise is added into the = /2 quadrature.

5. Discussion

We have considered quantum noise in amplification and attenuation. It has been showit &7
that the Fock state loses its sub-Poissonicity before the P function becomes to be pos
itive in the whole phase space during its amplification and attenuation in heat baths
The super-Poisson field never becomes sub-Poissonian during the phase-sensitive am
plification.
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