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Approximate quasiprobability functions based on discrete coherent state superpo-
sitions are introduced. It is shown that in contrast to the exact quasiprobability
functions that may not exist in some region of their parameter the proposed ap-
proximate functions exist everywhere even for Glauber P-functions.

1. Introduction

Due to the noncommuting relation between the coordinate and momentum oper-
ators, there is no unique quantum mechanical distribution function corresponding to
that of classial physics where, especially in classical mechanics, phase-space methods
are widely used. A whole family of quasiprobability functions can be defined according
to different operator orderings [1]. For some nonclassical states these quasiprobability
functions may have negative values in some region of phase space, morever in certain
cases they do not exist even as a moderate distribution.

It turned out that the phase-space description is especially convenient for systems
with quadratic Hamiltonians [2]. This explains why the Wigner function is so succesful
in quantum optics [3]. It is also a useful tool to analyse such an inherently quantum-

‘mechanical feature as quantum interference [4]. Recently promising attempts were
- carried out for using the Wigner representation in diagnostics of quantum states (the
80 called quantum tomography) [5].

* 'Presented at the 4th central-european workshop on quantum optics, Budmerice, Slovakia,
) May 31 - June 3, 1996
wmv.swm_ address: janszky@sparc.core.hu
»mu.:.wm address: fimre@sparc.core.hu
mmw.:;m: address: szil@thunderbird.crystal.core.hu
mru.amm_ address: adam@thunderbird.crystal.core.hu
E-mail address: mshkim@ccs.sogang.ac.kr

0323-0465/96 © Institute of Physics, SAS, Bratislava, Slovakia 269



270 J. Janszky et af

2. Quasiprobability functions

In phase space the statistical distribution function W = W(z, p,t) determines the
evolution of the statistics of the system if the initial state is specified not deterministj
cally but in a probabilistic way [6]. This joint distribution function satisfies the Liouvilj,
equation which for a classical harmonic oscillator has the form ;

ow p OW ow :
PR i P LN ,
at m Oz dp :
The classical distribution function is a real probability function, the one-dimensiona}
coordinate or momentum distribution can be obtained from it by integration over th
conjugate variable. The expectation value of any physical quantity defined through 2
and p as a funtion of ¢ is given as

(@) = [ Weep, 010z, phdadp.

For a quantum-mechanical treatment of the problem one can substitute the @:ga&,.
f(z,p) with a corresponding operator f(2,5) on the left side of Eq. (2), however, dué
to the fact that the the position # and momentum P operators cannot be measured
simultaneously ([, §] # 0), it is impossible to find a single quantum-mechanical prob-
ability function W. The description of the quantum-mechanical state in phase space is
not unique; hence there are a family of quasiprobabilities [7], of which the Wigner [8],
Glauber-Sudarshan P [9] and Husimi Q [10] functions are widely used. +

The Wigner function is defined as

W)= &

2

M
d*pexp(an® —a*n — @Es :

where x(7) is the normally ordered characteristic function
x(1) = Tr{pexp(nal) exp(~n°a)] .

Two other quasiprobability functions, the Husimi Q function and the Glaube
Sudarshan P function can be introduced similarly

Qo) = = \ d*nexp(an’ — o’y — [n?)x(n) ,

T2

and

H * *
Pla) = — [ d*nexp(an” — a*n)x(n) .
All these quasiprobability function can be packed into one generalized quasiprob:
bility function [1]

Wia,s) = MM \%d exp(an® — o — £vy\3v . Ad
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These functions serve as probability functions for evaluation of moments of different

, O—-&Q—.mﬂﬂ

(@) = [ daeyawias), ®

- where {(a!)™a"}s denotes normal-ordered, symmetrical-ordered or antinormal-ordered

‘ =1, s =0 and s = —1 respectively.

ma_ﬂ,ﬂmwﬂ“mwnw“ww:@“ functions are not real probability distributions and they do not
have to be positive or even exist at all points of ﬁrw phase space. ‘Ho. be more mwmnmmnu. the
Husimi function always exists and positive definite, ﬁrw usual <§mso.~. function mucm.am,
but may be negative in some regions on the o-plane, while the P function may not exist

- at all as a usual function or even as a moderate distribution. The fields with classical

correspondence should be represented by positive, well-behaved quasiprobabilities in
vrmmm space.

3. Approximated Wigner function and quantum interference

The behaviour of the quasiprobability functions especially the existence of their
negative regions are very informative on the nonclassicity of a state [11-13). .

Recently Liitkenhaus and Barnett have discussed the zmmm.SSQ of the E.S\m:uuov-
abilities [12]. They introduced a quantitative measure of nonclassical behavior .Gmmma
on negative regions of quasiprobabilities. It has been well-known that the quasiprob-
abilities, especially Glauber-Sudarshan P function can be used as the measure of the
nonclassicality of the given field. The nonclassical depth has been defined based on how
much noise must be added to the nonclassical signal to have a positive well-defined P
function [11]. . .

Among quantum-mechanical pure states the coherent state is the only state with a
definite form of the P function [12]. .

An even stronger aspect of quantum behaviour than the negativity of the ncm.,m_@nov-
abilities is their nonexistence. For this, let us consider a Gaussian Wigner function, ﬁml
scribing squeezed coherent states. The Wigner function Wy(a) for a general Gaussian
field can be written as [14]

1 pola —@o)? 4 (0 —02)? t mola — o\ g
exp | — - (9)

/72 — 4|pol? 2 ~ 4|p,[?

Substituting (9) into (7) one find the generalized quasiprobability mcun.ﬁws. For %rm
sake of simplicity let us consider a squeezed vacuum state. Its characteristic function
has the form [15]

U O
x(n) = exp(=Mnl* + 5™ 0" + 557"%) . (10)

Here 5 = coshrsinhre™® and M > 1(\/4[S[?+ 1 — 1), 7 is the squeezing parameter,

the equality sign holds for pure states. The maximal and minimal uncertainties of the
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quadrature operator X = ae~*© + ate*® for this state are
Dvﬂwzah.n:_.: =1+2M = N_.w_ .
Substituting (10) into (7) we can see that the integral in (7) exists only if

14+2M - 2|S|> s,

i. e., according to (11)

D..X‘W:.: >s.

As the coherent signal does not effect the relation between parameters M, S and squess

ing, one can formulate a more general statement: a squeezed coherent state does pay

have quasiprobability functions W (a, 5) for 5 > AXZ. . Y
The superpositions of coherent states [16,17],

| 2,8) = co(| 2) + €' | 2)),

referred to as Schrodinger-cat states when the constituent coherent states are macro:
scopically distinguishable, have attracted much interest. Although the coherent state
are the most classical of all pure states of light, their simple superposition described
by Eq. (14) shows remarkable nonclassical features as a consequence of the quantura
interference [18-20,4]. The macroscopic superposition of coherent states [21] shows neg
ativity in the Wigner function due to the quantum interference between the composité
states. The negativity in the Wigner function can be considered to be the quantum
signature of the given field. s
The two most typical superposition states are the even or ”male” (¢ = 0) and odd
or "female” [22] (¢ = ) cat states. The case with small phase-space distance between
the constituent states, by analogy, could be called Schrodinger-kitten states. BE:
The characteristic function is

x(m) = NPlexp (=2]2]* + nz* + n*2) + exp (22 — nz* — p"2) +
+exp (nz* — n*z) + exp (—nz* + n*2)].

The Wigner function of the male Schrédinger cat state (for real z = z)

u .
S\vaﬂ n*. Tlu_ata_u +m|u_p+a_u+wmlm_a_~oom AAHMEQ.T &L ,
leads us to better understanding of the interference pattern. The first two terms in the
Wigner function of Eq. (16) correspond to the Gaussian bells of the constituent coheref
states while the third term describes an interference fringe pattern between the bel
We note that although two coherent states with strongly different arguments are almos!
orthogonal to each other, the maximal amplitude of the interference fringe remains two0
times larger than the amplitudes of the constituent coherent states, independently from
the distance between them. The wavelength of the fringes decreases with the increase
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Fig. 1. Usual (s = 0, Fig. 1a and 1b) Wigner and generalized (s = %, Fig. Ic wbm 1d)
quasiprobability functions W(a, s) of Schrodinger male (Fig. 1a and 1c) and female (Fig. 1b

" and 1d) cat states consisting of two coherent states on the real axis of the phase space. One can

see that the fringe emerging from the quantum interference of the coherent states Umnimmd. »”Tm
Gaussian bells of individual coherent states is emphasized as we change the quasiprobability

function parameter s from 0 to }.

of the distance between the coherent states, the phase of the fringe depends on the
relative phase ¢ in Eq. (14) between the composite part of the cat state. . ‘

The interference can be emphasized by chosing s > 0 in the generalized Wigner
function

u | | o’o |N.No +
S\AQ_MVH Q-uﬁ_m,\l_av —HQXU u?x HWAW Nv +®xU _Q ._u.lh:Q NN +

e 2l As% “HatzMeozT) | oxp ZHelte)(azz) L (17)

a3 it is seen in Fig. 1., where two different Wigner functions with s = 0 (Fig. la and 1b)
and s = (.5 (Fig. lc and 1d) are shown in the case of male (Fig. la and Ic) and female
mora.a&:mon kittens with z = 0.8. While for the usual Wigner function a.rm novwgca
States’ bells merge with the interference fringe between them, for the generalized Wigner
function the interference pattern can be seen clearly.

The picture becomes more complicated if we superimpose more than 2 no:mww:n
States. In this case multiple fringes can constructively or destructively interfere with
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Fig. 2. Usual Wigner (s = 0, Fig. 2a) and approximate generalized (s = 0.6, Fig. 2b)

quasiprobability functions W(a, s) of vertically squeezed vacuum state (r = 1). Fig. 2b show
a state approximated by 12 coherent state. For these parameters r and s the exact Wigne
function does not exist. In comparison with the usual (a) Wigner function the generaliz

quasiprobability function emphasizes the interference pattern. :

each other and also with the original coherent state bells to produce different nonclas-
sical states [18,19,23] u

[9) = fulzi) . (18
k

One can approximate any pure state with any accuracy by these discrete coherent stat
superpositions optimizing the number of coherent states, their positions and comple
weights [23]. For example the discrete superposition of n 4 1 coherent states (a gen

eralization of the female cat state) situated symmetrically on a circle with radius'r:
phase space

/oy = n
nlez M 2ri 2ni

enF1¥ | pentrk)
for small enough radius r leads to the n-photon Fock state | n) [24].
One can easily find the generalized approximate Wigner function

M * “_. 2 H 9 " MA.‘HN P QVAﬂ“ _ Q*v
ﬁ:lmv m&.@nmxﬁﬁ M_u:_ lw_a»_ + ziz) -

L

Wela,s) =

(20)-
A remarkable property of this appoximate quasiprobability function is that it mxmmn.
for all s < 1, while the exact function might have a massive region of the parameter
where it ceases to exist.

Fig. 2. shows the Wigner function of a slightly squeezed vacuum state (squeezin
parameter r = wv While for s = 0 (Fig. 2a) there are very few details, for s = 0
(Fig. 2b) a rather complicated quasiprobability funtion can be seen. We note that this'is"
an appproximate Wigner function constructed with 12 equidistantly situated coheren
states. For the chosen parameters (r = £, s = 0.6) the exact Wigner function does
not exist. Nevertheless, using the approximate Wigner function one can find the mean
value of a physical quantity with the required accuracy
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(ot a)) = [ dase’,0)Wias), (21)

(a*, a) is a whole function

gle”,a) = MQ:SAQJ:QS . (22)

where ¢

;m.onm as in Eq. (8) {}s denotes s-ordering of operators a' and &. Substituting Eq. (20)
into Eq. (21) one can find the required expectation values

1 PRRNS ) —— (=" * __2
({o(@, @}y = = fufire” 70 D gum SO (ks —2) s A= 1
kK n,n
(23)
where EM&L&,S are Hermite polynomials of two variables with generating function

-Azy [25].

‘ ..E:m w__uwnoiﬂynm Wa(a, s) function exists everywhere but at s = 1. This divergence
differs principally from the divergence caused by e.g. condition (13) that can be called
deep divergence as it involves the nonexistence of W(a,s) in a éro#o region of s. The
deep divergence was avoided by the Schrodinger kittens approximation. We mﬁw: show
in the following that the remaining shallow non-existence can be removed by mixing n.vo
state with an infinitesimally small noise which does not change any physical properties
of the system. For this purpose let us consider a damping process,

a=/Jain +/1—gb, (24)

where g is damping and b the collective annihilation operator of the heatbath with mean
photon number < bth >= n(T). . .

Substituting (24) into the definition of the characteristic function and that into
Eq. (7) we find,

1 in, @ s—(1—-g){1+42n(T))
= W (—,s), §= . (25)
S\Q.BAH;Q-MV g A/\W V q

We can see that an infinitesimally small noise can destroy the divergence of the

approximate quasiprobability function in (20).

4. Conclusions

In this paper we reviewed the properties of quantum-mechanical quasiprobability
functions. We introduced approximate quasiprobability functions W, (e, s) using the
Superposition of finite number of coherent states.

Appropriately chosen coherent state superpositions converge to a desired state very
Quickly due to the strong quantum interference between the constituent coherent states.
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We have shown that W, (a, s) exists everywhere for s < 1 even if the correspondip
exact quasiprobability function does not. An infinitesimally small added noise can eve
remove this remaining divergence at s = 1. Using W,(a, s) we derived an expressio
for evaluating the expectation value of g(&, a!) operators of arbitrary ordering.
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