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The study of the propagation of quantized fields in nonlinear dielectric media is
an area of increasing theoretical and expeimental activity. As a result of their
interaction with the medium the fields can acquire nonclassical properties such
as squeezing. In order to describe these phenomena it is first necessary to quan-
tize electrodynamics in the presence of a nonlinear medium. We explore three
approaches to this problem: the phenomenological, the macroscopic, and the mi-
croscopic. In the macroscopic approach the medium is characterized only by its
susceptibilies while in the microscopic a model of the medium is required.

1. Introduction

The interaction of light with a nonlinear dielectric medium is responsible for a mumber
of the nonclassical effects which have been studied in quantum optics in recent years.
Squeezing and sub-Poissonian statistics can be produced in x?) media and quantum
phase diffusion occurs in x{®) media [1-4]. More recently studies of the propagation
of quantized fields in nonlinear media have been undertaken. Squeezing in quantum
solitons has been predicted and observed [5,6], as has phase diffusion [6-8]. Collisions
of quantum solitons can be used to perform a quantum nondemolition measurement of
photon number [9-11].

The first step which is necessary for the description of these phenomena is the quan-
tization of the electromagnetic field in the presence of a nonlinear dielectric medium.
This has been done in three ways. The first is the phenomenological approach in which
One starts with the classical field equations and simply substitutes the usual expressions
for field operators for the classical fields. This method has its risks and can lead to a
Hamiltonian which does not reproduce Maxwell’s equations {12]. A more methodical
Way of proceeding, the macroscopic approach, is to describe the medium by means of its
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linear and nonlinear susceptibilities and to apply the canonical quantization procedur
to this theory. That is, one finds a Lagrangian which gives the macroscopic Ma.
equations as equations of motion, from the Lagrangian the canonical momenta g
Hamiltonian are found, and, finally, the canonical commutation relations are imp.
(12]. The third method, the microscopic approach, involves constructing a EEmOmoov
model for the medium and retaining the medium degrees of freedom in the gmo
{13,14].
Here we would like to discuss the macroscopic and microscopic approaches. The
each have advantages and disadvantages. In the macroscopic approach the descriptig;
of dispersion is more complicated and it is not possible to address questions of operato
ordering. On the other hand, the microscopic approach is limited by the model o
the medium which has been oro%s while the macroscopic theory needs only a set of
numbers, the susceptibilities, to characterize the medium. The macroscopic theory h
been developed by P. Drummond and S. Carter into a useful tool for the study of the!
propagation of quantized fields in nonlinear media [15].

2. Macroscopic Approach

Maxwell’s equations inside a dielectric medium are given by (in Heaviside-Lorentz units

V-D=20 Qx_wIIm'w
at
V-B=0 QXWIQU
o’

field and the polarization P is given by

H.HXACHM...XGV“HH.TXE :EEE +.

the medium is uniform, lossless, m:a nondispersive. We im:; to find a rwzmwmﬁmwmﬁ,
which has Eqgs. (1) as its equations of motion. Before doing so we need to choose
particular field which is to be the basic dynamical variable in the problem. _Hrmnm ‘ar
two possibilities. The first is the usual vector potential A = (Ao, A) where

B=VxA,

and the second is the dual potential A = (Aq, A) where

A
B= 9 + VAp

¥ D=VxA.

This potential can only be used if external charges and currents are ahsent. We shall’
discuss both approaches [12].
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If the vector potential A is used as the basic field the Lagrangian density is

. 1 1 2
L(AA) = m:% B2?) + x_m:mm +wx£mm Ex

1
+ Axm.wymmm_.ﬂ._@»mu? Amv

From this we find that the canonical momentum corresponding to A, which we designate
by I = (o, M), i
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Here we note two things. The first is that the canonical momentum is different from
that in the noninteracting theory where II; = —E;. This is a consequence of the fact
that the interaction depends on A. The second is that the vanishing of ITp implies that
Ag is not an independent field. If we impose the Coulomb gauge condition, V- A =0,
we find that it can, in fact, be expressed in terms of the canonical momenta I1;.

For the Hamiltonian we have [12]

2
H(A,TI) \mu [(E?+B*+ xEm Ej)+ wxmw_wm‘,.mwmk

3
+ SXGLEE; BB, )

It is useful to express this directly in terms of the canonical momenta, D;. To this end
we define the tensors 80} by

Ei=fD;+BSID;De + ... (8)

These tensors can be expressed in terms of the susceptibility tensors

pY = (1+xM)”
a2, = AN xz 9

Making use of Eq. (8) we find for the Hamiltonian

DD, D;) + m

:»U..bh,b»

1
H(A,TI) = \%%EN +
m&ib—.bg‘bxp_. (10)
The theory is quantized by imposing the equal-time commutation relations

[A;(r, 1), T (', )] = i) (v — ). (11)

Here, as in standard QED, we use the transverse delta function in order to be consistent
With both the Coulomb gauge condition, V- A = 0, and Gauss’ law, V- D = (. As
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in the case of free QED it is possible to perform a mode expansion for the field and tq:
define creation and annihilation operators. In particular, for the mode with momentymy
k and polarization é,(k) we have the annihilation operator

1 3 _—ikr. [
ag (1) = ]ﬂ\m re éalk) - [ ‘mJP?._&
)
— ——D(r,t
=Dl ]
where wr = |k|. Note that because aj , depends on D, and consequently contains

matter degrees of freedom, it is not a pure photon operator. It represents a collective
matter-field mode. E

simpler. First, it is no longer convenient to express the polarization in terms of th
electric field, but we instead write i

P=71:D+7? DD+ 4 :DDD. (13)

The tensors 7{) are closely related to the tensors Q)

D =1-p0 a9 = -l i=2,3,... (14)
The Langrangian density is now ,
1
huwafcuimcse“c+wus§_uu+... (15)

From this one finds for the canonical momenta

IIp =0 zu. = Im.n.. AHGV

In this approach the canonical momenta do not depend on the interaction; they are
the same in the free and interacting theories. This is what makes the dual potentia
theory simpler. When the theory is quantized the equal-time commutation relation
are the same as in the free theory. As we saw, this was not the case when the usual
vector potential was used. Because of this property it is also straightforward to describe
inhomogencous media using the dual potential. This is considerably more complicated &
A is taken to be the basic field, because then the inhomogeneity of the medium appear
in the fundamental field commutation relations {12].

The fact that IT = 0 again means that Ag is not an independent field. In this case
however, if we impose the Coulomb gauge, V - A = 0, we can choose Iy = 0 [12]. Thi
represents another simplification over the standard vector potential approach.

The Hamiltonian is now

1

wcs& :DD

H = \%;w:uw +D?-D -5V . D)
1y @
- MU.: :DDD)]. (17)-
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This together with the canonical equal-time commutation relations
[Aj(r,2), Ax(r', 1)) = i63) (r — 1), (18)

define the fully quantized theory.

So far nothing has been said about dispersion. It has been assumed that the response
of the medium to the fields is instantaneous. In a dispersive medium the polarization
at time ¢ depends on the field not only at  but at previous times as well. That is, the
voFlsmﬁo: is nonlocal in time. This presents serious problems for the Hamiltonian
formulation, and subsequent quantization, of a theory containing dispersion.

One approach to overcoming this difficulty was pioneered by Drummond [16]. He
formulated the theory using the dual potential, which he then broke up into narrow
band, slowly varying parts. These become the basic fields of the theory. Because of
dispersion the linear polarizability is now a function of frequency, w (dispersion in the
nonlinear susceptibilities represents a small effect and is ignored). If in each frequency
band the linear polarizability is expanded in (w —w, }, where w, is the central frequency
of the band, up to second order, the result is a local theory for the narrow-band fields.
This theory can then be quantized.

Carter and Drummond have applied this theory to describe fields propagating through
a fiber with a x® nonlinearity [15). The narrow-band field, ¥(z,1) is assumed to vary
only along the fiber (the z direction), and it obeys the commutation relations

(¥(z,t), ¥1(2',8)] = 6(z — 2'). . (19)

The Hamiltonian is

1 b vt o ot 9
H = = T gt n>r v
w\c &NT@AQN@ ¥ muv.*.s 8z 0z

—oxE ()97, (20)

where v is the group velocity, xZ is proportional to x®) and w" is the second derivative
of frequency with respect to wave number evaluated at the center of the frequency band.

3. Microscopic Approach

In order to formulate a microscopic description of nonlinear optics we need a model for
the nonlinear medium itself [18,14]. We shall consider one consisting of two-level atoms.
The atoms will occupy the entire quantization volume, V, and their density p will be
such that there are a large number of atoms per cubic optical wavelength. Because we
shal} w:_z consider optical wavelengths we can partition the medium into small boxes.
The size of each box i1s much less than a wavelength, but it, nonetheless, contains a
large number of atoms which we shall assume to be the same for each box and shall call
0. Because the size of a box is small compared to a wavelength each atom in the box
Sees the same field. Consequently, the atoms in each box can be described as a spin
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s = np/2 object which interacts with the field. The Hamiltonian describing the b,
interacting with the electromagnetic field is

H= M m_Q.Mva + MUE#QWDW + m 0 M»?.— + m.ﬂs?

=1

where

Ny
Hipy = MUMWU wEw«\?—hn.W T +9Wm|—~m n..vstﬁnx_wﬁi .wA vv
=1

Here we have assumed only one polarization is present, Ey is the energy &&.mnau
between the levels, ,m.a .mA+v and ,mA ) are the spin operators for the I** box, N, is ..,r
number of boxes, wsm

p(k) = eEofalx]b) - é(k).

The matrix element (a|x|b) is just the dipole matrix element of the atom and é(k)is
the field polarization vector. The wave number k, is a cutoff imposed to guarantee erw*.w
the wavelength does not become smaller than the box size.
In order to proceed we want to expand the spin operators. This can be done by 5.5
the Holstein-Primakoff representation of the spin operators in terms of boson oamwson
and annihilation operators ¢! and (. We have {17]

SC) = (25— ¢to) 3¢ S = ¢t(2s — ()12

5@ = s 4+ ¢l

The excitation number for the boson operators, i. e. ¢'¢, corresponds to s3 + s, wher
53 is the eigenvalue of S®). Therefore, the boson vacuum state corresponds to the spin
pointing down, i. e. all atoms in their ground states. If we are only considering stat
whose excitation number is small we can expand the square roots :
1 1

560 = v25(1 - =¢T¢) §™ = Vas¢h(1 - (). 2
In our model of a nonlinear medium the fraction of atoms in each block which is excite
is small _uwnw:mm we are off Tesonance. Hrmnmﬁow.m the use of this expansion wm .Emﬁmmm

own set of creation and annihilation operators). In addition we go to a continuo
representation where (; is replaced by ((r) where

K@), ¢M )] = 6@ - 1),

The resulting Hamiltonian is

m man*um.ﬁw Nu-n:?
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where
1
Hy = Imzmc.fm_c,\ &u..n: r){(r) + M E»n—nmw
v <k,
+ m|3m w“» FWn + anw + nwﬁn + a _
ki<t
2l = $ \ &ulaw@*w Ty awmlw Ny (¢T(r) = ¢(r))
_EAF.
2y _. &u ikr I.W n.v AA:HV hA v
m‘n.: - \ ﬁﬁgﬂnm =+ a 9k
“ w?\l 2

Iki<k.,
= (x)¢(r)?). (28)

Here gy = p(k)\/p/2wi and N is the total number of atoms.

Hrmmmaﬂ:os_wzmo.v E_G_W ammn».&wmaroo_mnﬁoammuonwnmm_mm:nmgoasmSz&m
linear medium. It is closely related to the Hamiltonian considered by Hopfield in Em
study of fields in a linear dielectric [18]. He found that the dynamics of this system is
most easily described in terms of modes which diagonalize the Hamiltonian, which are
known as polaritons. They are neither pure field nor pure matter modes, but mixtures
of the two.

The operator mﬁﬁmw describes the nonlinear interaction betwen the field and the
medium. It is not in a form which is familiar from nonlinear optics. In particular,
for a single-mode field interacting with a two-level atom medium we would expect a

Hamiltonian more like the one which is used to describe self-phase modulation
Hine = Mat)2a?. (29)

; ; . ; : 2
Is it possible to extract an interaction of this form from H, .A:Wo

The answer to this question is yes, and the key to answering it is polaritons. One

first diagonalizes Ho + H; (1) in terms of new operators a) and fj which are linear

..:a

combinations of a4y, j, a! K and ¢! Kk and satisfy boson commutation relations. Here

G = % \_\ dPre=E T (). (30)
One then has
Ho+ H) = Y [Eu(k)af g + Ea(k)BL By, (31)
k| <k
where

w:m_w + wi(wk + 2C0)]

+ [[E2 — wie(wi + 2Co))? + 16 Bowigp ) /%)
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Ex(k) = [E5 + wk(wx +2C0)]

=
V2
— [[E2 — we(wk + 2C0)]? + 16 Eqwegp ] /%) 2,
with Cg = (e2p)/(2mwy). The next step mm.ao express _Amw in n.Q.Bm of ak and By . T} 4
results in a great many terms, but a considerable simplification occurs if only a smaly
number of modes are highly excited, and we keep only terms containing these mod
For example, if the o) mode is the only one which is highly excited we find that-

..A.?:éar?wa
where A(kg) is a constant which is found from the transformation which relates ‘th
polariton to the matter and field operators. By going to the polariton basis we hay
recovered the self-phase modulation interaction. This tells us, in addition, that the
operators in Eq. (29) should not be field operators, but should, in fact, correspond.
mixed maitter field modes. .

Suppose that instead of a single mode we have a pulse. In particular, let us assum
that the pulse consists of a(k) modes where k is in a small neighborhood, S, of k,
that case we have ‘

2 :
HE = A0k0) 30 37 30 D7 fieyle, etk Mk, Ok (34
kes —bm.m.w.umm Wam.w

The equations of motion for the operators aj. which emerge from the theory obtaine
by combining Eqs. (31) and (34) are similar in form to those obtained for the mode
annihilation operators in the Carter- Drummond theory. b
Finally, let us note two features of the microscopic theory. First, dispersion i§
included in a natural way because the basic modes in the theory correspond to polaritons
and not photons. The polariton dispersion relation is different from that of photon
The second concerns operator ordering. The polariton operators do not appear 11
the Hamiltonian in normal order. In deriving Egs. (33) and (34) we have dropped
terms arising from commutators. We expect these terms to be small in the situati
considered here, but this will not always be the case. The microscopic theory m?mm‘w.m
a way of examining this issue while the macroscopic does not.

4. Conclusion

We have examined three different approaches to the quantization of the electromagneti
field in the presence of a nonlinear dielectric medium: the phenomenological, the macro-
scopic, and the microscopic. The phenomenological approach has found the greatest .
use but is not well grounded in the underlying theory. The macroscopic theory is built
on firmer foundations and has been applied to the study of the propagation of quan- -
tum fields in fibers by Carter and Drummond. The microscopic approach is the most
fundamental, but its development is at an early stage.
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The study of the propagation of quantized fields in nonlinear media is an area of

o reasing experimental and theoretical activity. It is essential that we achieve a better
cumoaew:&sm of the underlying theory for the field to proceed.
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