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DUALITY IN THE RAMSEY INTERFEROMETER!
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The quantum-optical Ramsey interferometer exemplifies two-way interferometers
in which the beam splitter also serves the purpose of a which-way detector. It is
shown that the visibility V of the fringes and the distinguishability D of the ways
obey the duality relation D? + V2 < 1 in interferometers of this kind.

1. Introduction

recent paper [1] reports an inequality that quantifies the notion of {(wave-particle)
uality in the context of two-way interferometers. According to this duality relation —
hich is logically independent of uncertainty relations of the Heisenberg-Robertson kind
2] — the fringe visibility sets an absolute upper bound on the which-way information
hat is available in principle. :

The duality relation refers to the knowability of the way. The extent to which the
experimenter possesses actual knowledge of the way taken is a different matter. As
a consequence of technical limitations, the experimenter may have only limited access
to the available which-way information. But that is not essential because knowability
counts and not human knowledge.

The derivation of the duality relation in (1] employs the simplifying assumption that
different physical mechanisms are used for the various elements of the interferometer:
beam splitter, phase shifter, beam merger, and which-way detector. This is the situation
indicated in Fig. 1(a). The objective of the present contribution is the demonstration
that the duality relation is equally valid when the same physical interaction both splits
the beam and detects the way, as indicated in Fig. 1(b). Tndeed, this scenario is not
uncommeon. For instance, Einstein’s recoiling slit in a Young double-slit interferometer
(3] is one realization, and so is the quantum-optical Ramsey interferometer [4]. The
latter will be explored here.
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Fig. 1. Schematic two-way interferometers with which-way detectors. The beam splitter BS
distributes the input among the two ways; the beam merger BM recombines the contributions’
and produces the output. The phase shifter PS introduces a relative phase which eventually
modulates the interference pattern. In addition, there is a which-way detector WWD. In A&,
another physical interaction is used for this purpose; this is the situation analyzed in [1].

(b) the same mechanism is used both for splitting the beam and for detecting the way.

Here is a brief outline of the paper. In Sec. 2 we recall the basic equations needed
to study the Ramsey interferometer. They enable us to identify, in Sec. 3, the fringe
visibility V and the distinguishability D of the ways. In Sec. 4 we then convince ourselves
that the duality relation [i] ;

D?4Vi<1

is obeyed. We close with a summary.

2. Ramsey interferometer

In the Ramsey interferometer of Fig. 2(a), a two-level (Rydberg) atom, prepared in it
excited state, traverses two stretches of microwave radiation. The classical radiation
in these Ramsey zones is assumed to be in resonance with the atomic transition. The
intensity of the radiation is adjusted such that each of the zones is equivalent to a /2
pulse. Therefore the atom would end up in its ground state if nothing else were going,
on. But at the central stage there is a static electric field. The differential Stark shift
experienced by the atom is tantamount to a relative phase shift of ¢ between the wavi
function components of the two atomic states. As a consequence, the probability”
ending up in the ground state equals (1 + cos ¢)/2. It is modulated by the phase ¢ an
so exhibits Ramsey fringes (or Ramsey beats if one wishes to emphasize that a detuning
is the origin of the ¢ dependence).

This setup is a two-way interferometer in which the ways are characterized by the:
natural atomic states at the central stage; see Fig. 2(b). The first microwave zone is
the beam splitter, the second one is the beam merger, and the static electric field of
variable strength is the phase shifter.

We describe the internal degree of freedom of the two-level atom in the usual manner
with the aid of analogs of Pauli’s spin operators ¢, oy, and o, so that (1+0.)/2
projects on the excited state and (1 — 0,)/2 on the ground state. Accordingly, if the
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Fig. 2. Ramsey interferometer. (a) A two-level atom passes through a first microwave field
that plays the role of a beam splitter BS; then it traverses a static electric field that acts as
a phase shifter PS; finally a second microwave field is the beam merger BM. (b) The ways
through the interferometer are characterized by the state of the atom at the central stage. In
one way the atomic transition happens in the beam merger, in the other way it occurs in the
beam splitter. (c) Upon replacing the classical microwave field of the beam splitter by the
quantized field of a resonator, the beam splitter may also function as a which-way detector
WWD. This is a realization of the abstract setup of Fig. 1(b).

atom has an initial inversion s, then its initial state is
_1
Pat = mﬁ + s0.) (2)

with —1 < s < 1. The action of each of the two microwave fields is given by the unitary
transformation

K R
Par —* €Xp AISMQevbmﬂ €Xp ANMQ«\V ) (3)
and the static electric field effects the transition
¢ ¢
Pat —* mvaiquv}, exp Omﬁv. (4)

The initial state (2) is thus turned into the final state

oD = 5[1+ s(oy sing — 0. cos )] %)

The probability of finding the atom in its ground state,

1 1
po = tr {501 - ) s} = S(1 + scos9), (6)
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is the interference pattern of this Ramsey interferometer. Its ¢ dependence ig
expected, and the fringe visibility equals the magnitude _u._ of the initial inversion 5%

Consider now the setup of Fig. 2(c) in which the classical microwave field of
beam splitter is replaced by the quantized radiation field of a resonator. This wmmomm.m
has a privileged photon mode (ladder operators a', a) that is resonant with the atomj
transition; all other modes are dynamically irrelevant. The two ways of Fig. 2(b) coul,
become distinguishable after this alteration in the experiment because the numbe
resonator photons may undergo different changes for the two ways. Whether which-way
information gets stored in the state of the resonator field or not depends on the initizJ
photon state t%ﬂ. o

The initial state of the combined atom-photon system is

pD = pQpl) .

Jaynes-Cummings coupling (in the rotating-wave approximation). The net effec
summarized in the transition

p—re P pet =yt yu

it replaces (3) for the beam splitter. The parameter ¢ is the accumulated Rabi mu,m—,

and 1
7= 5(osao_al)

[with 04+ = o {0y as usual] is the coupling operator with a convenient phase conve
tion. The unitary operator of (8),

U=e¥ = .Hl.l_rwb cos(pVaal) + mlwlﬁoOmAS,\a*av

1 sin Aﬁz\aﬂupﬂ ) 1  sin Aﬁz\a )

+ o a—-o_a p
2 laatl 2 Vaal

exemplifies the general structure

U= wTH+QNV<++ toyVi —o V_  +(1~-0a)V__],

where the operators V, ,,...,V__ affect solely the degree(s) of freedom of the which

way detector, here: the photonic degree of freedom of the privileged resonator mode.
The four V., are restricted by the unitarity of U. These restrictions are compactly
stated as the requirements that the equations ;

(@Vyy + m<+:v£c«<++ +BV, )+ (aV_y - m<x:vXQ<|+ —BV__)

=2a*a+ 2089 (12)
=(aVy, — BV ) (aVyy ~ m<|+vd, +(aVi_ +8V__)(aV,_ +m<||%

_back to the Ramsey interferometer of Fig. 2(a). Another possibilityis V| =
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hold for arbitrary complex numbers o and 3.
For example, the particular choice V, 4 = 1 turns U into exp(iwoy, /4) and gets us

-+ = Yt
V.. =V._= U_ with unitary operators U + and U_. This characterizes the situation
-

) of Fig. 1(a) which is investigated in [1].

When supplemented by (4) and (3) for the effect of the phase shifter and the beam
merger, respectively, the initial state (7) and the unitary operator U of (11) represent
interferometers of the kind depicted in Fig. 1(b) in all generality. There is no need to

.consider initial atomic states different from (2) because all other ones are obtained by

unitary transformations on the two-level degree of freedom, and these transformations
amount to nothing more than a redefinition of the operators Vi in (11). In summary,

the initial state p() of (7) is transformed into the final state P that is of the form

1+s l1-—s
PO = ——=p) + =" (13)
with
0 _1+os t @ 1o, t @
o§ = |A:<++mrv.<++ + 45%%& =
o, — 10y, _: (i) 0.+ 10y ; 2
- ia RAZ IV {a eﬁ;n%<++ : (14)
and the replacements
Vipg -V, Vi_=V._ . (15)

turn bmv into ﬁmc.

These implications of (13) are important in the following:
a) The probability that the atom ends up in the ground state is

1 1 1 ;i
Po = tragtrpn {5 (1~ 0.)p0 } = 5 +5Re(e7C), (16)
where the complex contrast factor C is given by
1+s t Q) 1-s 5
C= ﬁv:ﬁ 5 Vi+Poh Vi — 5 <m+nw_w<||v
1+s t (i) 1-—s (i)
) (Vi <++v1_ T A<||<m+vnr : (17)

b) The way through the Ramsey interferometer is determined by a measurement of o,
before the atom passes the beam merger or, equivalently, by a measurement of o, in
the fina state p(f). These two possibilities correspond to calculating the probabilities

w) for taking the two ways by the two equivalent expressions in

wE) = traetrpy, AWC +o,)exp AS.MA@V 7 exp nl&mqm\v v

1
= traptrpn g 5 (1 £ 0g)pl §, (18)
)
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with the outcomes

1+s B 1—s O]
W) == VeV + =V Vi,
y l+s G 1-s (i)
NI LI R (eI

¢) These probabilities and also the contrast factor (17) appear in the final state of:{
two-level atom,

o0 = tr [0} = w [14 2 (0 —w) - oylm(e=C) —o, Re(e7C))| @

d) If the o, = +1 way has been taken, then the final photon state is bmw which
identified by :

l1+o 1+s ; 1-s i
8~+V§Mvﬂv = aﬂwnA 9 GBAGV = 4 «\.M+bmw.‘\++ + 4 a\lq+bmm<l+,

and likewise we get for the o, = —1 way

y (= l-0 14s 7 1-s i
W) =t { 5720} = VLGV VIRV (@2

e) The weighted sum of bmﬂv

(=)

and pg;

P = try, {p0} = wH () + wl) /5,

is the final photon state if no determination of the way is performed (or if the resul
of such a measurement is deliberately ignored).

3. Fringe visibility and which-way information

The maxima and minima in the ¢ dependent pattern pg of (16) determine the fringe]
visibility ¥ in the usual manner. This yields A

v=|c|

without further ado. The quantification of the which-way information is less famili
As in [1] we use two numbers, the predictability P and the distinguishability D,
characterize pieces of which-way knowledge of different kinds. ,

The predictability P refers to the a priori knowledge of the way. If the interferome
is operated symmetrically so that both ways are equally probable [that is: w(®)
wl=) = WH. then P = 0 because there is nothing predictable about the ways. By contrast;
if the interferometer is extremely asymmetrical so that only one way is realized ?rwe
is: w®) =1, w) = 0 or wt) =0, w(~) = 1], then P = 1 because the way is kno
with certainty beforehand. More generally we have

P = [ — w)],
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hich interpolates between these extreme situations. A given value of P has this sig-
.«.mnmnnm“ If one would be asked to bet on the way that the next atom will take, the
“.munwam chances are maximized by putting the money always on the more probable
way. Then the actual way will be predicted correctly in the fraction (1 + P)/2 of all
¢ The distinguishability D refers to the which-way knowledge that is stored in the
final state of the which-way detector, here: w.n the final photon state nmw of (23). H:w
reading of the detector amounts to measuring a suitably chosen observable A with
?o:%mm:o_.wa& eigenvalues A’ and eigenkets |A’). Suppose that such a measurement
has been performed and the eigenvalue A’ has been found. This happens with a relative

frequency that is given by
A\_N_»a_ﬁow_\ﬁv = w(*) Ab\_nm:b\v + STvAm\_bwmv_b\v , (26)

where the two summands correspond to the two ways. Now, again we are asked to bet
on the way. The measured value of A represents additional information that potentially
enables us to improve the winning chances. To this end we put the money always on
the way that contributes most to the sum in (26).® In many repeated experiments, this
strategy will yield a “likelihood for guessing the way right” that is given by*

L4 =3 Max{ 165147, w5140 |
>~
1 1 - -
=145 20 [ At 1A) - w1514 @7)
.}\

Its calculated value can be checked if one actually determines the way — by one of
the methods mentioned at (18), for instance. Such a measurement yields also the
probabilities (A’ nmﬂ:k& ), and therefore the numerical value of £ 4 can be inferred from
experimental data.

This value depends on the observable A that is measured. An unfortunate choice
could result in £, = w in which case one could just as well throw dice and would not
be off worse when basing the bet on the predictability P. Inasmuch as®

SO xvn| < ef{ix|} (28)
M\\

;roEm for all trace-class operators X and all orthonormal sets of kets |Y’), the largest

<.£:m of £, is obtained if the (relevant) eigenkets |A’) of A are also eigenkets of the
difference E?gynv - Eﬁlvbmmv. Accordingly, there is an absolute optimum for £ 4, viz.

1
L4 < Lo =5(14D) (29)

Py -
;Mr.m betting strategy is the extension of an idea by Wootters and Zurek [5].
smecall that Max(z,0} = (2 4+ 9) + 3lo ~ vl il 2, 2 0.

1s Is a variant of the Peierls inequality {6].
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where
D = try, { JuM gl — w3}

is the distinguishability. In mathematical terms, this number D is the distance bet
EAi.oMut and ST{TV in the trace-class norm; its physical significance is, how or
more important: D is a practical, quantitative measure of the amount of whichiy
information that has become available. The ways cannot be distinguished at af
D =0, and they can be held apart completely if D = 1. .
Since the distinguishability D represents the which-way information acquired b
optimized reading of the final detector state, one expects that it always exceeds
predictability P, i
D>P. :

This is indeed true because all trace-class operators X obey tr{ _N : > _itm } _ ‘

As a simple illustration consider an initial photon state which contains exactly
photons. Then the operators V, ,,...,V__ identified by the comparison of (11) wit
(10) imply that there are no fringes, V = 0, and the predictability and distinguishability
are given by ,

2
The validity of (31) can be checked explicitly.

P= _MMmOOmAmﬁ/\:.T: - HWmOOmAwﬂz\mv_“
D= 112 sin? (pv/m T T) + - sin? ()
+ _~+m8mu?o<:+~v - H!moo%?o/\mv_.

2

4. The duality relation

The positivity of the statistical operator bmm of (20) implies immediately that the pr
dictability and the visibility obey the inequality .

PIyyvici.

This observation has been made by Greenberger and Yasin [7]; it is implicitly contain
in the work of Wootters and Zurek [5] and also in a paper by Mandel [8].5 The me
surements by Rauch, Summhammer, and Tuppinger [9], who introduce an asymmetr
into a neutron interferometer, are consistent with (33). ;
In view of (31) the duality relation (1) is more stringent than (33); examples with
P =0 and D = 1 can be found easily. Let us now show that (1) is obeyed by the
distinguishability of (30) [with (21) and (22)] and the visibility of (24) [with A,:w
It is expedient to separate the contributions proportional to (1 + s)/2 and (1-s)/
Accordingly, we introduce
(a) €, = ivla\.?bmh Vi_} and(b)C_= —tr,n T\fb_m*w V__} (34

SMandel’s “degree of intrinsic indistinguishability” equals V//1 = P2 in the present notation.
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as 1\0= as i t ;
(@) D, = wﬂvr:a\fnmw Vit = <+un%.<+| I} (35)
and (b) D_ = wﬁmurﬁ_<m+nm_w<:+ - S,:b%_a\nl: :
Then the triangle inequality
tr{|X + Y} <ee{|X]} +ee{]¥]} (36)
establishes 1—
p<itip 1o5p (37)
- 2 2
and 145 1-s
C= 2 C, + 5 Cc_ (38)
holds by construction. For s = +1 and s = —1, the duality relation (1) reads
D2 4le,[’<1 and D +|c_|P<1, (39)
respectively. We shall give an explicit proof of the s = +1 variant; the s = —1 variant

is then obtained by the replacements (15). And the two inequalities of (39) together,
in conjunction with (37) and (38) imply the duality relation (1) right away.

For a proof of the first inequality in (39) we insert the spectral decomposition of the
initial photon state,

Pon = 2 Dildi) (| (40)
k
[with Dy > 0, 3", Dk = 1, and (d;|dx) = j«, of course], into D, of (35) and arrive at

1
D, < MM b»eavi_ﬁ+_&»vﬁa_<++ - ﬁu E»X&»_Su _v (41)
k

after making use of (36). For each k the trace herein can be evaluated directly? with
the outcome

2
Dy <Y Dey/1—|u] (42)
k

where v, = A&»_<+|<..n +ldx) is a convenient abbreviation. We combine this with

Cp = Dev, (43)
k
Produced by inserting (40) into (34a), and get
2 2 2 1., 1,
@w. + _Q+_ < Mbu.gk @/\m - TQ_ /\H — _c»_ + Me.“.e» + MG»GL . TTC
ik

4
The equality <++<.h+ + <+I<+~.I = 2 is essential; it is a particular case of (12).
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A look at (42) tells us that the magnitudes of the numbers v, cannot exceed unit
_SL < 1; therefore the square brackets in (44) are confined to the range 0 <[l-]g
We are thus led to

N 12
D} +16, " < 3234 = [i Q)] =1, 4
ik
and this completes the proof.

We emphasize that this proof of the duality relation (1) does not rely on an uncer
tainty relation of the Heisenberg-Robertson kind [2], i.e, 6468 > W_Q\r muv_ for the .
spreads of two observables A and B and the expectation value of their commutator. 1t
1s equally important to realize that the inequalities (1) and (33) convey utterly different3®
messages despite their striking similarity because the predictability P and the dist;
guishability D represent different pieces of which-way knowledge. Furthermore, th
two inequalities concern different degrees of freedom. In (33) one meets an immediata
consequence of the positivity of the final state (20) of the two-level atom. In marke
contrast, (1) originates in the quantum properties of the which-way detector, here: o
the resonator field.

5. Summary

The quantum-optical Ramsey interferometer of [4]) exemplifies two-way interferometers
in which the physical interaction of the beam splitter is also employed for the purpose o
which-way detection. We have shown that the duality relation reported in [1] is equally
valid for interferometers of this kind. The proof exploits the quantum properties of the
which-way detector. :
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