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Highly entangled states of more than one quantum system are necessary for con-
ceptual tests of quantum mechanics and other alternative theories. These tests
include local hidden variables theories, pre- and postselection, QND measurements
and quantum computing, and tests of quantum mechanics itself against, e.g., the
so-called causal communication constraint. We show how to produce nonlocal
states of the electromagnetic field which are located in several cavities and are
highly entangled. We first discuss a two-cavity state, one of the four Bell basis
states for this system, in which both cavities are in a one-photon state or both
are in the vacuum state. We then discuss a straightforward generalization to a
similar n-cavity state. These states can be produced by sending apropriately pre-
pared atoms through the cavities. As applications we present a test of quantum
mechanics against the causal communication constraint using the two-cavity state
and a test of the pre- and postselection quantum mechanics using the three-cavity
state.

1. Introduction

The state of two coupled quantum systems is said to be entangled if it cannot be
expressed in any basis as a product of states of the individual systems. This implies
that the two systems are correlated. In fact, if the degree of entanglement is large
enough, Bell’s inequality can be violated [1]. Consequently, entangled states feature
Prominently in investigations of the foundations of quantum mechanics. For example,
a recent proposal by Greenberger, Horne and Zeilinger for a very strong test of local
hidden variables theories involves the use of a highly entangled state of three systems
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[2]. Tests of quantum mechanics itself also require that highly entangled states be useq
[3,4]. 3
Experimental realizations of these tests require that methods of producing entangled;
states be found. Previous work has used cavity QED techniques and has concentrated
primarily on producing entangled states of atoms. Cirac and Zoller showed how {6
produce a maximally entangled state of two two-level atoms [5]. They could also produce
a GHZ state of three atoms if the cavity through which the atoms pass is prepared in
superposition of a three photon state and the vacuum. A method of producing entangled
pairs of atoms using two micromaser cavities was discussed by Bogar and Bergou [6];
Sleator and Weinfurter, as a byproduct of their work on teleportation and quantum logig
gates, found how to create an entangled state of one cavity and an arbitrary numb
of two-level atoms [7]. Recently, Gerry has developed a scheme to generate GHZ stat
of four two-level atoms [8]. A method of generating particular entangled states of tw
cavities occured as an intermediate step in the teleportation procedure proposed ‘b
Davidovich, Zagury, Brune, Raimond, and Haroche [9]. :
Here we shall show how entangled states of photons in spatially separated cavities
can be produced using the techniques of cavity quantum electrodynamics. First, we shall
discuss the necessary theoretical background. This includes atomic Rabi oscillatio
induced by the interaction of an atom with an applied classical field and both resonan
and nonresonant interactions of an atom with a field in a cavity. A combination o
these can be used to produce a state of two cavities which is a superposition of a stat
in which each cavity has one photon and one in which both are in the vacuum state.
straightforward generalization allows us to manufacture a GHZ state for three caviti
and, in principle, a maximally entangled state of N cavities can also be produced
Finally we sahall discuss various tests of quantum mechanics. :

2. Theoretical Background

We shall consider two-level atoms with upper state la), lower state |b), and energ
separation Fy. In the interaction picture the resonant interaction of this atom with
single-mode field is described by the Hamiltonian

H =ig(aWa - o-)gt),

where g is the atom-field coupling constant, at and a are the mode creation and anr
hilation operators, and o{+) and ¢{~) are the atomic raising and lowering ovwnwwoa..w .
the field is in a highly excited coherent state the field operators can both be replact
by the real c-number field amplitude &. ;
Let us look at the classical field case first. If the atom and the field interact for
time ¢ the evolution of the atomic states is given by o

la) — cosfy(t)|a) —sinb;(2)|b) .
[6) — sinfy(t)|a) + cos b, (t)]b), Aw

where 6, (t) = £ogt. Later we shall be interested in specific values of 0:(t), but we shal
leave it unspecified for now.
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When the field is quantized we have to give both the state of the atom and the
pumber of photons to completely specify the state of the system. That is, our states
are of the form |a, n) or |b, n), where n is the photon number. The field is assumed to
exist inside a cavity which the atom traverses. We are particularly interested in the
cases n =0 and n = 1. For n =0 we have

la,0) — cosbs(t)]|a,0) — sin b5(2)]b, 1)
0,0 — [b,0), 3)

and for n = 1 we are only interested in what happens to an atom injected in its ground

state
[6,1) — sin 5(t)|a, 0) + cos 8, 1b, 1). 4)

Here we have that 8,(t) = gt.

Finally, we want to see what happens when a two-level atom which is far off resonance
with a quantized field mode interacts with it. We consider, in particular, the situation
treated by Brune, Haroche, Raimond, Davidovich, and Zagury of a 3-level Rydberg
atom in a cavity [10]. The lowest levels are our states |a) and |b), and there is a third
level |i) above level |a}. The cavity mode is slightly detuned from the @ — i transition
with the detuning denoted by 4. If the vacuum Rabi frequency of the a — ¢ transition,
2, and the cavity photon number, n, satisfy the relation 2*n/§% << 1, then in the a—b
subspace the effective Hamiltonian of the atom is, in the interaction picture,

2
Hepp = Wafliilﬁ (5)
where ¢{*) and o(~) are, as before, the atomic raising and lowering operators for the a
and b levels. Note that this Hamiltonian does not change either the photon number or
the atomic excitation.

We are interested in the time evolution generated by this Hamiltonian when the
photon number is either zero or one. If it is zero the states of the atom are unaffected.
If it is one, we have

la) — €?®)|a)
) — (o), (6)
Where 03(t) = (22/8)t. That is, the |b) state is unchanged and the la) state is multiplied
by a phase factor.
We now have the basic interactions we need to create entangled cavity states. It is

Bow only necessary to arrange them in the proper sequence and to choose the proper
values of 01, 05, and 03.

3. Two-Cavity Entangled State

Our object is to produce a maximally entangled state of two cavities. We begin with
W0 cavities in their vacuum states. An atom in the state [b) is sent through a region
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where it interacts with a classical field (Ramsey zone) with §; = x/4, putting the atom

in the state

) = 75(0a) +10).

This atom is then sent through the first cavity, with which it is _”mmo:mzf and Srmmm‘e.r@
interaction time has been adjusted so that 6y = 3w /2. This gives us the atom-cavity
state

2510+ 02100208
The states [0); and |1); are, respectively, the zero and one photon states of om<“w5vmmr
and [0)2 and |1); are those for cavity two. This first step _m.oaz :mnmmmméw eommmaw ish
the appropriate initial condition, Eq. (8), for the _.\.io. cavity system. H e firs maoﬁw
now disappears from the scene, and a second atom in its mnmz:a state is mmba into thé
system. The atom is first sent through the Ramsey zone which prepares 1t in the M“&,.
|[+). It then passes through both cavities and a wmoo:a Ramsey zone Go.aéoon them
The atom interacts off-resonantly with the first cavity and the interaction f.Bm has vmm.n
chosen so that §3 = m. After this interaction the state of the full atom cavity system-i

1
—=(11)1]=) + [0)114-)10)2,
,\m: =) +1011+)
where .
=) = —(|b) — |a}).
|- = =518y~ 1a)
The atom now passes through a Ramsey zone with 0; = 7w /4 which has the effect
+) = 1b)
_|v - ‘_Qv.

so that the total atom-cavity state is now

1
—(—{1)1]a +_Ov~_&vV_Ovm
Finally the atom passes through the second cavity where it interacts resonantly wit
9, = w/2. The resulting state of the system is ;

,«_lmﬁ_:__cm +10)110)2)[b).

cavity field state
251102 +10):10)2)

This is just one of the four Bell basis states.

|®2) =
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At this point a brief discussion of the experimental feasibility of our scheme is in
order. We shall do this within the context of the micromaser experiments performed by
the Garching group [11-13}. The coupling costant was found to be g = 40 kHz. In these
experiments the adjustable parameters are the cavity-field detuning, d, the atom-field
interaction, 7, which is determined by the velocity of the atoms, and the angle of Rabi
rotation which is controlled by the applied Ramsey fields. The Rabi angle should be
tunable between 0 and 7, and for a given atomic velocity (interaction time) it can be
varied by changing the intensity of the Ramsey field. For the interaction time in the
resonant case we require gTres = /2, or T, & 39us. This corresponds to an atomic
velocity of about 700 m/s, well within the experimental range. The size of the detuning
and the interaction time in the off-resonant case can be obtained from two somewhat
conflicting requirements. First, for the interaction to be off-resonant we need § > g
(possibly § >> g) which implies that ¢’ = ¢?/6 << g. On the other hand, one needs
§'Togj~res ~ ™ to conditionally interchange the |+) and |-} states. Hence we need
Toff—res/Tres ~ 8/g. A good practical compromise could be the choice § = 3g and
Toff—res = 3Tres = 120us. Again, this interaction time, i. e. the atomic velocity, is
within the experimental range. The amount of detuning necessary for the onset of the
dispersive interaction can be produced by a variety of experimental techniques including
simple mechanical squeezing of the cavity and Stark shifting with an applied electric
field. Thus we can conclude that the method we are proposing for generating entangled
states of two spatially separated cavities is experimentally feasible.

4. .H_rwmmquiﬁ% Correlated State

Next we wish to prepare a three cavity state similar to that in Eq. (14), 1. e. a state
which is a superposition of a state in which each cavity has one photon and one in
which each cavity is in its vacuum state. This is the type of state which is needed for
an experimental realization of the GHZ test of local hidden variables theories.

We start with two cavities in the state |®;) and add a third cavity in its vacuum
state. We now send an atom initially in its ground state through all three cavities. The
atom first traverses a Ramsey zone, with 8; = 7/4, so that it enters the first cavity
In the state |[+). It interacts off-resonantly with cavities 1 and 2, in each case with
03 = m/2. At this point the system is in the state

I,WIMATVE_EN + [4)10)110)2)10)3. (15)

Before entering the third cavity the atom is sent through a Ramsey zone with 0, =Tn/4
transforming the system state to

w?_as_sw + 16)10)1(0)2){0)s. (16)

The atom now interacts resonantly with cavity 3 with #; = 7/2. The final state of the
System is

wﬁ_;:rsu + 10)110)210)) ), (17)
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1. e. a product of the desired field state and the atom in its ground state.
It is clear that this process can be continued to produce entangled states of eveyd]
more cavities. In general, if an entangled state of N cavities

@ 41) = w:; 10w + 10)1 - [0w),

B o o AR AT e o

has been produced it can be used to produce the N + 1 cavity state
1
o = —(|1);...10 +10):...10 2
[®N41) ,\w: Mo 0N41 +10)1 - [0)N 1)

This is done by sending an atom in the state |+) through the first N cavities, whid
are in the state |®x), where it interacts off resonantly with 63 = 7/N. Before entering
cavity N+1, which is in the vacuum state, the atom is sent through a Ramsey zone wit}
§1 = 7w /4. Tt then passes through cavity N + 1 and the result is the state |®n4+1)1b)

5. Tests of Quantum Mechanics

We would like to describe briefly how a state such as |{®;) can be used to test quantur
mechanics. Most such tests, such as those proposed by Bell and by Greenberger, Horne,
and Zeilinger, compare the predictions of quantum mechanics to those of local hidden-
variables theories [2]. Here we propose something a bit different. Quantum mechanics
constructs probabilities, from an underlying Hilbert space structure, hence are restric-
tions on the kinds of correlations quantum mechanics can produce. The first of these
was discovered by Tsirelson in 1980 [3]. The existence of these constraints provides a
method for developing very stringent tests of quantum mechanics. These tests do not
depend on dynamics; they depend only on the way in which probabilities are calculated
in quantum mechanics. The test itself consists of performing measurements to see’i
any correlations which are not allowed by quantum mechanics occur.

To be specific suppose a source produces two- particle states, and that one of t
particles is measured at detector 1 and the other at detector 2. At detector 1 we cad
measure the observables X, or Z;, and at detector 2 we can measure X5 or Z,. ‘We
can think of each detector as being equipped with a switch. When it is in one position
the detector measures the X variable and when it is in the other it measures the Z
variable. Let us suppose that each of these observables can take only the values 1 or
~1. On very general grounds, quantum mechanics predicts that if [4]

(X1 X2) = (21 25) = 1, @e

then
(X1Z3) = (X27y). (21)

This result is independent of dynamics and depends only on the way quantum mechanics
constructs probabilities. o

The results from a large number of runs of such an experiment can be summarized
by writing down 16 probabilities: p(X; = 1,X; = 1), p(X; = 1,X, = —1), etc.
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These probabilities should satisfy what we call the causal communication constraint.
This simply means that :.. we look at only one detector, the results we obtain do not
depend on the switch mai:.wm on the other detector. It is possible to write down sets
of _unocmv:msmm which describe the results of our Gedanken experiment, are consistent
with causal communication, but yet cannot be produced by quantum mechanics [4]. It
is, in fact, possible to find such sets of probabilities which satisfy Eq. (20) but not Eq.

(21). The quantum mechanical constraint expressed by these equations allows us to

test quantum mechanics by finding a state for which Eq. (20) is true and then verifying
experimentally that Eq. (21) is satisfied.
For two cavities define

zj = 1) (1] —10); (0|
X; = 11501 +10); 51, (22)
for j = 1,2. These operators have only 1 and —1 as eigenvalues. We also note that
Aem_xwvﬂw_ﬂvwv = AQM_NHNM_.H.NV =1. Awwv

It is not difficult to measure the variables X; and Z;. Let us look at the case
j = 1 to be definite. In order to measure Z; we simply send an atom, initially in its
ground state, through the cavity where it interacts resonantly with the field and where
0; = n/2. The inversion of the exiting atom is equivalent to the Z; of the initial field
state. The measurement of X, is similar except that after exiting the cavity the atom
now traverses a Ramsey zone with 6; = 7/4. The inversion of the atom after passing
through both the cavity and the Ramsey zone is equivalent to the X; of the initial field
state. In both cases the atomic inversion can be measured.

It is, therefore, feasible to prepare the cavities in the state {®2) and to measure X;
and Z; for j = 1,2. Consequently, cavity QED provides us with a method of testing
quantum mechanics.

6. Conclusion

Highly entangled states are useful in testing local hidden variables theories and also in
testing quantum mechanics itself. They also feature prominently in certain schemes to
transmit quantum information such as teleportation [14] and quantum cryptography
(15). One, therefore, wants to have a method of producing them. In the lecture given
at the meeting further tests of pre- and postselective quantum mechanics [16] as well as
the connection of these schemes with quantum computing and quantum nondemolition
Measurements [17] have also been briefly discussed. For space constraints these and
other consideration will be discussed elsewhere.

.>m we have shown cavity QED gives us the necessary tools to carry out these tests.
It is possible to produce maximally entangled states of two, three, and, in principle,
.2 Cavities. It should be possible to use these states to process and transmit quantum
Information.
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