acta physica slovaca vol. 46 No. 3, 231 — 240 June 1996
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We study the dynamics of a single ion moving in an explicitly time dependent
Paul trap and interacting with a classical laser field.

1. Introduction

The recent success [1] in creating non-classical states of the motion of a single ion in
a Paul trap [2] has triggered the question of measuring [3] the density operator of the
vibrational degree of freedom. Paul trap endoscopy [4,5] is the answer to this question
of state measurement when one takes into account the explicit time dependence [6] of
the trap. This technique relies on the rotating wave approximation (RWA) simplifying
a rather complicated time dependent interaction Hamiltonian to a multi-quantum non-
linear Jaynes-Cummings model. In the present paper we study the underlying model
in more detail and, in particular, focus on the question of the validity of the RWA.
The article is organized as follows: In Sec. 2 we outline the model [7] which couples
the internal degree of freedom to the center-of-mass motion by a classical laser field. We
derive an exact expression for the interaction Hamiltonian in the interaction picture,
which brings out the explicit time dependence of the problem and which is the starting
point for the rotating wave approximation. We devote Sec. 3 to a discussion of the Rabi
frequencies and investigate various limiting cases. In Sec. 4 we perform the rotating

Wave approximation and study its validity in Sec. 5. We conclude by summarizing our
main results in Sec. 6.
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2. The model Hamiltonian

In this article we study the system of a single two-level ion moving in one dimensio
a Paul trap and interacting with a classical laser field. The complete Hamiltonian

.m.,.:sv = NWQ:QV + N.»qu*. .*sznﬁv

consists of three parts which describe the center-of-mass motion, the internal structug
of the ion, and the interaction. =
The one-dimensional center-of-mass motion of the ion with mass m follows from th

Hamiltonian R
Hem(t) = %ﬂmm + WBENQV 22,

where
, w(t) = Lwk [a+ 2q cos(wnt)] (3
denotes the time-dependent steepness of the harmonic oscillator potential. The dimen-’
sionless parameters a and g are proportional [2] to the applied DC and AC voltages;
respectively, and wer = 2n/T is the (radio) frequency of the AC voltage. ;
We describe the internal structure of the two-level ion with transition frequency w
by the Hamiltonian

Hy = Lhw,,

with &, being the Pauli spin matrix.
The interaction of the classical laser field with the two levels of the ion reads in the

rotating wave approximation [7] B

Hine(t) = mmAm# exp[—i(wrt — k)] + r.n.v :

Here, g and k denote the interaction strength and the wave vector of the light field with
frequency wy, and the Pauli matrix &% is the raising operator for the internal levels.o

the ion. G
We now concentrate on the interaction Hamiltonian Eq. (5), which we transform

into the interaction picture e
Hine )= QMBQV QMAS NHEQV Qw?_v Qnaﬁv :
via the unitary evolution operators
Ua(t) = exp Alem G, &
and .
Uen(t) = T exp Tw \. dt’ bﬁ:@v_ ‘
0
where 7 is the time ordering operator. We recall the relations

Ut U, = ot et
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and [8,9)]
A

2mw,

08 (t) 2 Uem(t) = (cob+edt) (10)
where b and b! are the annihilation and creation operators of a time-independent refer-
ence harmonic oscillator with frequency w, and the complex-valued function () satisfies
the classical Mathieu differential equation

ét) +wit)e(t) =0 (11)

with the initial conditions €(0) = 1 and é(0) = iw,. As Glauber has shown [9], the
choice of the frequency w, determines the natural basis of the center-of-mass motion of

the ion.
With the help of Egs. (9) and (10) we arrive at

mn?:nﬁv =hg AQA«I..E@FQV_ + v.o.v , (12)

where the displacement operator D(a) = exp(a b’ — a* b) involves the time-dependent
displacement a(t) = ine(t) with the Lamb-Dicke parameter 7 = k [h/(2mw,)]*/?, and
A = wf, — w, is the detuning between the laser frequency and the two-level transition
frequency.

Note, that the interaction Hamiltonian Eq. (12) involves all possible multi-phonon
mnu.:mmﬁonm. To bring this out most clearly we express the displacement operator DAQV
in the basis of the energy eigenstates |n) of the reference oscillator. When we recall the
relations {10]

n!

) 1/2
(n|D(a)|m) = ﬁll_ exp Alw_Q_uv (=e*)™ " Lpn :Q_uv (13)

m!

for m > n and

) /2
(n|D(a)|m) = ﬁi_ exp Alw_Q_wv a®mLnom :Q_uv (14)

n!

for m < n, we can write the interaction Hamiltonian in the form [4]

. 00 [
Hi(t) =Y > hQU™)() 6% |n)n+ 5| + h.c.. (15)
n=0 s=-—n
M.Mnm., we have introduced the substitution m = n+4s and the time-dependent generalized
bi frequencies

(n,nts n! 12 2
W) =g | 2] em(ianline @) e (~FIF) L7 kOP
(16)
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for s > 0 and

(n+ s)!
n!

1/2 )
| ept-i ) ineo exp (~Z10P) Lzt 0 ey
(17)

».OnI:Mm.Alo.m,_.oEmEm.ﬁmvmun::.vEm_.mnomiso;manrmaaﬂcicmbwwa th
complex-valued function e(t) determines the time dependence of the Rabi frequenciesiy
We now concentrate on a particular solution ¢ VQV of the differential equation (11

With the specific choice [9]

a4 = g |

S A R

o0
EMJ = p+we MU nec,

n=-—o0oo

of the reference frequency w,, the solution of Eq. (11) takes on the Floquet form Tz
F)(t) = exp(ipt) 4(t) - (1

Here, p is the so-called characteristic exponent, and the function

‘ o
() =¢(t+T) = MU ¢n exp (inwyrt)
n=-—00

is periodic in ¢ with period T = 2 /ws. We find the expansion coefficients ¢, and tk ,

characteristic exponent u by substituting the Floquet solution Eq. (19) into Eq. (11).

For the specific case Eq. (3) of the time dependent frequency w?(t) of the Paul trap

this yields a three-term recurrence relation for ¢, which fixes 4 via the Hill determinant

[11]. The coefficients ¢, follow from the resulting linear set of equations. In the stable

region of the Mathieu equation [12] the coefficients ¢, and the characteristic exponent.

u are purely real [9]. The frequency u then gives the secular frequency of the motion
of the ion.

We now substitute the Floquet solution Eq. (19) into the Rabi frequencies Egs. (16)

and (17). When we expand the T-periodic part of Q(*"+5)(¢) in Fourier series, we,

arrive at

[e o]
Q@) = 3 o™ expliflw ~ su — A) 1],
l=—o00

where the expansion coefficients §?B+& for s > 0 read

e 2y [ 17 e 2 g e EIBOF s 02t
w20 [ I [ g e FROP L) e
-T/2 ,
(22)
and similarly
(nnts) _ | (n+s)! 2 i " dt —s xmw_&s_m s (.2 2y —ilwet
w2 g LR e [ & g FIOF L2 o)
—-7/2

(23)
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for —n < 5 <0. After substituting Eq. (21) into Eq. (15), the interaction Hamiltonian
in the interaction picture takes on the form

Hine(t) = M.w WU S hw™™) explilwg — sp— A) 8]+ [n)(n+ 5| + hoc.. (24)

We emphasize that this representation is exact. Note, that the time dependence of
the interaction Hamiltonian in the interaction picture is governed by harmonics of the
specific combination lwe — s 44— A, that is by all harmonics of the frequencies wr and
u and the detuning A.

3. The Rabi frequencies

In this section we focus on the Rabi frequencies Q(""+5)(t), Eq. (21), and their time-

independent expansion coefficients EM=_=+«V given by Egs. (22) and (23). We first note,
that the quantities EM=.=+3 are purely real for s even and purely imaginary for s odd.
This results from the fact that the integrals in Eqgs. (22) and (23) are real, since Eq. (20)
yields the symmetry relation ¢(—t) = ¢*(¢) for ¢, real.

In Fig. 1 we display the modulus _EM:ETV_ as a function of I and n for the six
different transitions s = 1,2, 3,4,5,6. Here we use the trap parameters a = 0, ¢ = 0.4,

and the Lamb-Dicke value 5 = 1. From this figure we recognize an oscillatory behavior
of _Ema_:tv | for { fixed, which is due to the nonlinear coupling between the internal
levels and the vibrational degree of freedom. Note, that for the chosen trap parameters
the explicit time dependence of the trap potential is important.

However, in the limit a,g — 0 the vibrational degree of freedom of the ion is well
described [7] by a time-independent harmonic oscillator with frequency p. In this case,
Eq. (20) simplifies to ¢(t) ~ 1 and hence we find from Eq. (19) the expression €(f) (1) ~
e Asa consequence, the expansion coefficients EMF:+&
and hence the Rabi frequencies Q("»+4)(¢) simplify to

all vanish except for { = 0

1/2 2
Qo) s g [l (in) e Ly () et (25)
(n+s)! "
for s > 0 and
n s .:+m_ T o \N—8 ImM -5 ~i(s
otz g [CERNT ¥ gy st )

moal: MmMo.>=m_omo=mmxvnmmmmo:m5nrmnm.moOmmmnwsawum:mEmoEmmgw
coupling mechanism were first derived in Ref. [13].

Finally we concentrate on the Lamb-Dicke limit for which n <« 1. When we expand
the coefficients Eqgs. (22) and (23) up to first order in 7, only the terms with s = 0, +1

Survive. Here we focus on the case s = +1 since the term with s = 0 does not change the
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Fig. 1. The modulus _EM...:+&_ for the different values s = 1,2,3,4,5,6 as a function of n an
I. Here we use the trap parameters a = 0, ¢ = 0.4, and the Lamb-Dicke value n = 1.

vibrational state. With the help of the property {12] L1(0) = n + 1 of the generalized
Laguerre polynomial we find from Eqgs. (16) and (17) the Rabi frequencies

Qe (@) ~ gig [P (O] Va+1e A

and

QUrn=D(1) ~ gineF) (1) Vre 8t

Here we recover the well-known square root dependence of the Rabi frequency on the
quantum number n of the ordinary one-quantum Jaynes-Cummings model.

4. The rotating wave approximation

We now return to Eq. (24), which shows, that the interaction Hamiltonian in the inter-
action picture involves all different multi-phonon transitions between energy eigenstates
{n) of the reference oscillator with frequency EME Note, that so far we have not yet
specified the detuning A. By an appropriate choice of A we can now select a spe;
cific interaction, which allows only such transitions which involve a certain number of
phonons [8,13]. This happens, when one of the terms in the sums over I and s in
Eq. (24) depends only slowly on time whereas all the others are rapidly oscillating
Indeed, when we choose the detuning A such that sop+ A = lower provided that

(I = lo)wet — (5 — so) p # 0 for all I # Iy and s # sq, we arrive with the help of the
rotating wave approximation at the time averaged Hamiltonian

-~ RWA 2 .
Hipe =3 b 5% [n)(n + sol + hec., (29)

lo
=0
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Fig. 2. The rotating wave approximation and possible resonances. The distance between the
straight line y = p/wrr - z and the possible resonances at (I —lo,s — so) shown by crosses
determines the quality of the RWA. The filled circle at the origin marks the single term (I =
lo, s = so) which survives the RWA. Note, that the terms at (+1,+7) are almost resonant but
can be neglected provided they violate the inequality Eq. (30). For the trap parameters a = 0,
g =0.4, and 7 =1 used here we find the value pu/wy ~ 0.14. )

which represents the sg-phonon nonlinear Jaynes-Cummings Hamiltonian [13]. In order
to achieve a large coupling we choose A such that only a term with large coefficients
Eﬁ:ui& survives the time averaging. Note, that these generalized Rabi frequencies
coincide with the Rabi frequencies of the ordinary Jaynes-Cummings model only in the
Lamb-Dicke limit. . :
We illustrate this with the help of the previous example of the trap parameters
a =0, ¢ = 0.4, and the Lamb-Dicke value n = 1. In this case [5] the ratio between the
secular frequency g and the trap frequency wyr reads pfwy ~ 0.14. In Fig. 2 we show
the straight line y = p/ws - ¢ together with-all possible resonances at integer numbers
ofy=1—1ly and z = s — s5. We recognize, that this line approaches very closely
the resonances at ! — lp = %1 and s — sp = 7. Note, that the coupling strength g
determines, whether these resonances indeed yield important contributions, since it sets
the time scale 7 ~ 1/g on which the wave function of the system changes significantly.
Hence all terms in the interaction Hamiltonian which oscillate faster than g average out
on the time scale 7. Therefore, we expect that only terms which satisfy the condition

[t = lo) wet — (5 — 50) pl < g (30)

give some contribution besides the term ! = Iy and s = sp. In addition, the ratios

of nrw corresponding Rabi frequencies EN?_:+.$ \Emw.aii determine how large these
contributions are.

5. The validity of the rotating wave approximation

In ﬁr.m preceeding section we have taken a time average of the explicitly time dependent
Mms.:noims Eq. (24) and have so arrived at the so-phonon nonlinear Jaynes-Cummings
amiltonian Eq. (29). Here the detuning A played a key role in selecting the number
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so of phonons involved in the transition. At this point it is important to recall that t,
time average of Eq. (24) is already the second rotating wave approximation. Indeed
the interaction Hamiltonian Eq. {5), which served as our starting point, was &wmm..a%
in the RWA since we have neglected terms oscillating with twice the optical frequency
Now we realize that this approximation was indeed justified since in order to selec
the so-phonon transition the detuning A is of the order of the secular frequency p o
the radio frequency wis. Both are in the MHz range and therefore far away from th,
optical regime. We emphasize, that a choice of A in the optical range would allow y
to investigate the influence of the anti-resonant terms. However, this is outside of th
scope of the present paper.

We now turn to the second RWA and test its quality for the case of the one-phonon
transition so = 1 and the trap parameters a = 0, ¢ = 0.4, and 5 = 1. For this purpos
we calculate numerically the probability P.(t) of finding the ion at time ¢ in the excited
state using the exact time-dependent interaction Hamiltonian Eq. (24). We compar:
the so-calculated probability to the probability

PR () = 3 (olel exp (~3 i 1) RONEO exp (£ 1)l (31)
:Ho

obtained in the rotating wave approximation. As the initial total state vector |¥(0)) =
[¥em(0)) ®@|¥a(0)) we use the direct product of the vibrational coherent state |¢hem (0)) =
|e) with a = 1.5 and the superposition state [12(0)) = 1(|g) + |e)) of the ground state’
|g) and the excited state [e) of the two-level ion. E

In Fig. 3 we show by solid lines the exact curve P.(t) and by dashed lines the
approximation Eq. (31). We emphasize the excellent agreement between the two curves.

6. Summary

In this article we study multi-quantum interactions of a single two-level ion in the Pau

trap. In contrast to related work we take into account the explicit time depender
of the harmonic trap potential. This time dependence carries over to the generalizes
Rabi frequencies which we investigate in detail. In two limiting cases, namely when t
time dependence of the trap potential is not important, and in the Lamb-Dicke lim
we recover well-known results.

Moreover we show, that despite of the complexity of the system originating from
the time dependence of the binding force we can simplify the complicated interaction .
Hamiltonian with the help of a rotating wave approximation. The resulting inter
tions are of the Jaynes-Cummings type with modified Rabi frequencies. In particular,
we discuss the conditions under which the rotating wave approximation is valid and
demonstrate its quality by comparing it to the exact numerical solution.

We conclude by noting that this model opens a new way of interaction engineering
By appropriately choosing the detuning A we can select an interaction which involves
only a pre-described number of phonons. Moreover the trap parameters a and ¢ together
with the Lamb-Dicke parameter 7 create a large set of Rabi frequencies EMP:tV which
we can use to engineer a large set of different interaction Hamiltonians. ‘
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Fig. 3. The quality of the rotating wave approximation for the one-phonon transition sg = 1
and the trap parameters a = 0, g = 0.4, and 7 = 1. The solid lines give the exact probability
Pe(t) of finding the ion at time ¢ in the excited state, whereas the dashed curves represent the
Tesults of the rotating wave approximation. The magnifications in the insets illustrate that
the exact curves oscillate around the approximations. In {a) we use the the coupling strength
9=10.01 - w,, whereas in (b) we use g = 0.001 - wy.
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