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We study the interaction between three light modes in x@ media. In the degen-
erate as well as the nondegenerate case we can introduce two different types of
phase space motion which we call phase stable and phase moving. We investi-
gate the correspondence between the characteristics of the phase space motions in
the classical and quantum domain. Using classical trajectories we construct the
approximate quasiprobability distribution function in phase space which enables
us to describe also quantum effects. This approach can be used to study the in-
teraction of light for high photon numbers. The limitations of this approach are
pointed out as well as the possibility to describe other nonlinear interactions of
the light modes.

1. Introduction

The dynamics of light modes in nonlinear dielectrics was extensively studied since
the sixties. The construction of the laser enabled theoretical as well experimental inves-
tigation of the behaviour of matter under extreme electromagnetic field power densities
(1,2]. The basic theory came out soon after the publication of the first successful exper-
iments and started so the field of classical and quantum nonlinear optics. The current
spectrum of the processes in nonlinear optics includes processes like second and third
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harmonic generation, parametric down conversion, four-wave mixing to name a few:
In particular the three wave Interaction attracted great interest. It describes a pro-
cess where from the pump mode we generate two other field modes namely the mmmuﬁ,
and the idler. Naturally also the reverse regime is possible where we generate throug
sum-frequency generation the pump mode. In practical implementations the modes
are considered empty or highly excited (so called parametric processes). This simpljZ
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In a:.w equations we used the following variables: ¢ is the scaled time ¢ = «t (x is the
coupling constant), § is the phase difference defined as

0=0p—p; - p,. va

The m:&omm..f ¢, prefer to the particular wave, i.e., to signal, idler and pump,respectively. -
To solve this set of six equations one has to realize that the parameter I' is an integral °
of motion [2]

T =, (Q)ui(¢)up (€) cos 0(¢). (4)
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at follows from the known equation of motion for the phase difference

wh
d cosf d
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In addition using the known constants of motion (only two are independent) [2,3]
3~H:w+:w , 3~H§m+:w , m3=ul— ol (6)

we write the solution for the squared field amplitude of the pump by means of Jacobian
elliptic function as [the other amplitude can be obtained from the conserved quantities

(6)]
up(Q) = wd, + (udy — ud,)sn?[y/ul, — ud (¢ + ¢o), m], (M
where u3, are the roots of the cubic equation
3 - (mq + ::ven +mymez — T2 = 0,

and the constant m equals
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The actual value of T' does not only help to find the solutions for the amplitudes but
can also serve for the natural classification of the phase motion. Knowing the solution
for the amplitude we write the corresporiding solution for the phase as

r
u(€)

In the case T' = 0 the initial value of the phase ¢(0) does not change during the time
evolution except the moments when the corresponding amplitude becomes zero u, = 0.
In this moment the phase can change by a factor of 7. The phase space motion for this
regime is realized on straight lines crossing the origin, Le., the modes move radially.
The realization of this regime can be achieved either by setting one of the initial field
amplitudes to zero or adjusting the phase difference § = +m/2. This phase stable regime
leads to the best possible energy conversion for given input intensities [as follows from
the equations (1)).

. The other regime - phase moving - corresponds to I' # (. Because the constant T
18 at any time nonzero each of the amplitudes will be nonzero and hence the individual
Phases of the modes can be obtained by a simple integration of the Eq.(8). Especially
simple motion can be achieved in the no-energy exchange regime. Let us look for this
Ohce again closer at the Egs. (1),(2) and (4). To fulfill the condition of no energy
transfer we have to set the phase difference initially to sinf = 0 and to choose the
amplitudes according to the following condition
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When this relation holds for the initial amplitudes of the modes the particular phages
evolve as

e (() = ¢z(0) + wMJ
.:H
and the fastest phase motion is observable with the least excited mode. The poin
describing the mode evolve along closed circles, i.e. they, just rotate in phase Space
with constant angular velocity.
In the quantum domain the nondegenerate three wave mixing is described by th
interaction Hamiltonian [4,5]

Hine = w(abét + athte). (11

The three operators a, band ¢ correspond to the annihilation operator of the signal
idler and pump mode.

(Hine) = 2xa]|B]ly] cos(ipe + s — pry).

In strict analogy to the classical case we can distinguish two types of phase space motion?
For (Hin:) = 0 we have the phase stable motion, in the case Amﬁ.:wv # 0 we have:th
phase changing motion. :
The phase stable motion cover very important quantum-mechanical regimes lik
sum-frequency generation or parametric down-conversion leading to the generation of 2
two-mode squeezed vacuum. For visualization of the phase-space motion the quasipro
ability distributions such as the Husimj Q- and Wigner W-function® can be used 6]
In the phase stable regime the initial (coherent state) distribution moves radially - with
its center along straight line through the center. As time elapses the initial distributiol
is distorted due to the fine details of the quantum dynamics. ’
The phase-changing regime corresponding to Qw&:v requires all modes to be initiall
excited. In the phase space the centers of blobs (e.g. corresponding to initially coherént
states) move along quite complicated lines corresponding to the classical solutions
In the discussion about classical solutions we pointed out a special classical regime
with no energy exchange between the modes [see Eq.(9)]. In the quantum regime this

Sfor their definitions see, e.g., the paper by J.Janszky et al. in this issue of Acta Physica Slovaca
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dition cannot guarantee the complete suppression of the energy flow between the
noumom However, it makes the effect small. In the initial moments the energy exchange
.Bo mm.onn of third order in time and just on the long time scale a visible energy
Mwﬂmmmu between the modes can be seen. In this particular case the phase space motion

proceeds along circles with the typical Kerr-like deformation of shape due to quantum

phase spreading. . . . :
Let us notice that this “no-energy exchange” regime is interesting owing to the possi-
bility to produce strongly sub-Poissonian light. The degree of sub-Poissonian character

is defined using the Mandel’s g-parameter [7]
((2'2)%) - (&12)*

(&%) .

9z =

With a proper phase and intensity adjustment we can suppress dynamically the energy
transfer between the modes, however we still can manipulate the fluctuations of the
photon number either by a proper choice of initial states or their entanglement [4,8,9].
With an initial Kerr-state ansatz [10] for the signal we can obtain significant sub-
Poissonian light [9]. The degree of sub-Poissonian character is limited in this case by
the phase space motion. To enhance the effect further we would need to keep the initially
adjusted phase difference which is unfortunately changed during the time evolution.

The classical version of the degenerate three wave interaction starts from the coupled
equations for the fundamental v, and the second harmonic Up wave (assuming exact
resonance and phase matching)

m,e« = —2v,vpsind;
&I&m v = wvlsind, (15)
2
m ¥s = 2vpcosf = cmu ;
d ew H,N
il = =& — 16
&A. ﬁﬁ ev cos ¢ dw A v
The phase difference 0 = ¢, — 2p, satisfies the equation
d v2 1 4
leQ” Aﬁl%dﬂv cosfl = Amw..l. C’qu H,&. A”—.Nv

The solution of the written set of equations can be obtained along almost identical lines
3s in the nondegenerate case, i.e., by employing the existence of the integral of motion
Iy= v? Upcosd. As a consequence we can introduce the same classification for the
wrmmormwmna motion. Let us turn to the quantum picture.

. The quantum description of the second harmonic generation is given by the effective
Wteraction Hamiltonian

T Hy = ky(@% + a3 (18)
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Fig. 1. The Husimi Q-function (contour) of the fundamental wave for the initial state. 1 m.g ]
with |a| = 10, |4] = 5. (@) ¢y = —x/2 corresponds to the phase stable motion - in ra €
direction; (b) ¢, = 0 is similar to the classically no-energy exchange regime characterized 360
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rotation in phase space.

The mean value of the interaction Hamiltonian (H2) is again a conserved quant
which represents a quantum analogue of the classical integral of motion I'y. It enables
us to distinguish two basic forms of phase-space motion and to connect the classical
phase-motions and their quantum counterparts. The two most important phase-space
motions are illustrated in Fig. 1 in terms of the Husimi Q-function of the fundamental
mode (signal). Initially both modes are prepared in coherent states

Fig. 2. The signal mean photon number, quadrature squeezing and Mandel’s q parameter .moH
the case of sum-frequency generation with [(0)) = |a = NB = uv_< = 0). The exact solution
1s plotted by solid line, Wigner function approach by * and Q function by A.

_Qv.__‘xv?

with o = |afe??> and v = [vle*#>. Namely, the amplitudes are le| =10, |y| = 5 an
the phases ¢, = 0, Py = —m/2,0. Fig. la with ¥y = —m/2 corresponds to the phase
stable motion (i.e., the radial motion of the centre of the Q-function in phase space). T

nonlinearity we can obtain in the “no-energy .exchange regime” the behaviour of th

SRRl TmE
modes typical for Kerr-like medium which is associated with x(3) nonlinearity [10). 270 ’ ;
3n] -
3. Quantum description via classical trajectories ms. .
3 *81 4 o’/
We showed, that the classification of the classical phase space motion can be refor 56, — 4
mulated in a close analogy also for the quantum picture of the three-wave dynamics..I o0 scaled time

is of interest to know, to what extend we can use the classical solutions of the three-wave
interaction in the quantum domain. In a simpler formulation of the problem, EES_M
in the so called parametric approximation, the solution is known. In such regimes one
of the modes is highly excited and can be treated as a classical field (the corresponding

Fig. 3. The same as in Fig. 2 but for the difference frequency generation with [(0)) = |o =
6)18 = 0) | = 6).
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Fig. 4. The signal photon number for down-conversion with [$(0)) = |o = 0|8 = 0)|y =
4,6,8). The exact solution is shown with a solid line and the approximate one with macw:wn
The validity of the approximation is not enhanced with increased intensity.

operators are replaced by complex numbers). It means that the model Hamiltonian
degenerates to a quadratic form. It was pointed out by Mollow and Glauber [6] that -
in the case of quadratic Hamiltonians we can use the classical solutions to obtain the
exact quantum evolution. The trick is to use as arguments of the Wigner function the
classical solutions. Namely, for the parametric three-wave mixing with strong pump,
Le., when ¢ mode is treated classically in Eq.(11), A

Wla, B;1] = Wlao(a, 8, 1), o, B,1); 0], (20)

where {ap(a, 8,1), Bo(e, B,1)} is trajectory in classical phase space (for signal and idler)
which at time ¢ approaches point {o, 8}. In other words, the value of the Wigner
function at time ¢ and the point {«, B} in phase space is obtained evolving this point
backwards in time according to classical equations of motion and taking the value of
the Wigner at ¢ = 0 for corresponding initial point {aq, Bo}. ,
To see more explicitly that Eq.(20) is valid let us consider the quantum Liouville -
equation for Wigner function for a one-mode system with canonically conjugate vari-

ables ¢ (position) and p (momentum):
OW  OHOW OHOW 1 &3HPwW

ot Jp &8¢ dq Op

"elassical terms”

+O(RY). (21)

"quantum terms"

It is evident that the quantum Liouville equation is fully equivalent to the classical
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Liouville equation only for quadratic Hamiltonians. In such situation it is possible to
describe by classical trajectories even initially negative Wigner functions T.om Eq.(20)].

We applied the Glauber’s philosophy to the case of all three modes excited (nonde-
generate three-wave interaction) [11] taking the approximate Wigner function

Wia, B,7;t] = Wlao(e, B,7,1), Bo(@, 8,7, 1), vo(e, 8,7, 1); 0] (22)

and neglecting thus “quantum terms” in the corresponding quantum Liouville equa-
tion [see (21)]. In practice, for three modes we should browse through six-dimensional
phase space what is not practically possible. Therefore Monte Carlo methods have to
be adopted with the importance sampling. In other words, the quantum dynamics in
phase space is simulated within the classical phase space using an initial ensemble of
phase-space points each representing a classical initial configuration and evolving along
a classical trajectory. The initial probability distribution in the classical phase space re-

‘flects directly the quantum fluctuations being chosen equal to an initial quasiprobability

distribution like Husimi (Q) or Wigner (W) function.

Some numerical results are presented in Figs. 2-4. The three figures cover the cases of
sum-frequency generation (|%(0)) = |)|8)|0) - Fig.2), difference frequency generation
(1%(0)) = |a)|0)|v) — Fig.3) and down-conversion (1(0)) = [0)|0)]y) — Fig.4). The
figures clearly demonstrate that there are certain limits for the applicability of the given
method. Even though there is still an excellent agreement between the mean photon
numbers (the results by the Wigner function are shown with stars), the higher moments
represented by the Mandel’s g-parameter and quadrature squeezing (for definition see
[4,9]) show already some deviation when compared with the exact quantum-mechanica}
calculation (shown as solid lines in Figs. 2-4). However, it is remarkable that the
validity of such an approach goes beyond the short time approximation, i.e., it covers
at least one quasiperiod of the energy flow between the modes. The other limitation is
the dependence on the initial state. In Fig. 4 the signal photon number is shown for
various values of v. Here the approximation holds only till the second reversal of the
energy flow. In Fig. 2 we included also the calculation using the classical simulation
of the Q function and afterwards we calculated the shown parameters. Even though
qualitatively the @ function shows a good agreement what the phase-space dynamics
concerns [12,13], it does not stand the quantitative test beyond the initial moments of
time. In other words, the Wigner method seems to be about as nearly classical as it is
possible for a full quantum theory.

Conclusions

We showed, that the dynamics of three waves in x® media can be in a natural way
classified in the classical as well as quantum domain using a proper integral of motion for
the degenerate as well as nondegenerate two-photon down-conversion. In the classical
€ase the classification is done using the constant I' and in the quantum case by the mean
value of the interaction Hamiltonian (Hine). In the case when these constants equal to
Z€ro we deal with the phase stable regime. Apart from a possible phase jump by 7 the
Phases of the modes stay on their initial values. This regime is also associated with the
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typical for a Kerr-like medium. )
The classical dynamics can be effectively used not only for the classification of phase

The classical trajectories can be used for description of the quantum dynamics also for
other nonlinear processes, e.g., four wave mixings.
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